Time-reversal symmetry breaking in the chemosensory array reveals a general mechanism for dissipation-enhanced cooperative sensing

Affiliations
  • 1IBM T. J. Watson Research Center, Yorktown Heights, USA.
  • 2Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, USA.
  • 3IBM T. J. Watson Research Center, Yorktown Heights, USA. yuhai@us.ibm.com.

Published on:

Abstract

The Escherichia coli chemoreceptors form an extensive array that achieves cooperative and adaptive sensing of extracellular signals. The receptors control the activity of histidine kinase CheA, which drives a nonequilibrium phosphorylation-dephosphorylation reaction cycle for response regulator CheY. Cooperativity and dissipation are both important aspects of chemotaxis signaling, yet their consequences have only been studied separately. Recent single-cell FRET measurements revealed that kinase activity of the array spontaneously switches between active and inactive states, with asymmetric switching times that signify time-reversal symmetry breaking in the underlying dynamics. Here, we present a nonequilibrium lattice model of the chemosensory array, which demonstrates that the observed asymmetric switching dynamics can only be explained by an interplay between the dissipative reactions within individual core units and the cooperative coupling between neighboring units. Microscopically, the switching time asymmetry originates from irreversible transition paths. The model shows that strong dissipation enables sensitive and rapid signaling response by relieving the speed-sensitivity trade-off, which can be tested by future single-cell experiments. Overall, our model provides a general framework for studying biological complexes composed of coupled subunits that are individually driven by dissipative cycles and the rich nonequilibrium physics within.

Related Concept Videos

JoVE Research Video for ¹H NMR: Interpreting Distorted and Overlapping Signals 01:02

872

Spin systems where the difference in chemical shifts of the coupled nuclei is greater than ten times J are called first-order spin systems. These nuclei are weakly coupled, and their chemical shifts and coupling constant can generally be estimated from the well-separated signals in the spectrum.
As Δν decreases and the signals move closer, the doublets appear increasingly distorted. The intensities of the inner lines increase at the cost of those of the outer lines as the signals are…

JoVE Research Video for Double Resonance Techniques: Overview 01:12

50

Double resonance techniques in Nuclear Magnetic Resonance (NMR) spectroscopy involve the simultaneous application of two different frequencies or radiofrequency pulses to manipulate and observe two distinct nuclear spins. One important application of double resonance is spin decoupling, which selectively suppresses coupling with one type of nucleus while observing the NMR signal from another nucleus, simplifying the spectrum and enhancing resolution.
Spin decoupling is usually achieved by…

JoVE Research Video for ¹³C NMR: ¹H–¹³C Decoupling 01:04

842

The probability of having two carbon-13 atoms next to each other is negligible because of the low natural abundance of carbon-13. Consequently, peak splitting due to carbon-carbon spin-spin coupling is not observed in spectra. However, protons up to three sigma bonds away split the carbon signal according to the n+1 rule, resulting in complicated spectra.
A broadband decoupling technique is used to simplify these complex, sometimes overlapping, signals. Broadband decoupling relies on a…

JoVE Research Video for Woodward–Hoffmann Selection Rules and Microscopic Reversibility 01:34

2.8K

Electrocyclic reactions, cycloadditions, and sigmatropic rearrangements are concerted pericyclic reactions that proceed via a cyclic transition state. These reactions are stereospecific and regioselective. The stereochemistry of the products depends on the symmetry characteristics of the interacting orbitals and the reaction conditions. Accordingly, pericyclic reactions are classified as either symmetry-allowed or symmetry-forbidden. Woodward and Hoffmann presented the selection criteria for…

JoVE Research Video for Cooperative Allosteric Transitions 01:58

7.6K

Cooperative allosteric transitions can occur in multimeric proteins, where each subunit of the protein has its own ligand-binding site. When a ligand binds to any of these subunits, it triggers a conformational change that affects the binding sites in the other subunits; this can change the affinity of the other sites for their respective ligands. The ability of the protein to change the shape of its binding site is attributed to the presence of a mix of flexible and stable segments in the…

JoVE Research Video for Chirality in Nature 02:30

11.5K

Chirality is the most intriguing yet essential facet of nature, governing life’s biochemical processes and precision. It can be observed from a snail shell pattern in a macroscopic world to an amino acid, the minutest building block of life. Most of the snails around the world have right-coiled shells because of the intrinsic chirality in their genes. All the amino acids present in the human body exist in an enantiomerically pure state, except for glycine – the sole achiral amino acid.