Journal: Nature communications

  • An artificial intelligence accelerated virtual screening platform for drug discovery

    Structure-based virtual screening is a key tool in early drug discovery, with growing interest in the screening of multi-billion chemical compound libraries. However, the success of virtual screening crucially depends on the accuracy of the binding pose and binding affinity predicted by computational docking. Here we develop a highly accurate structure-based virtual screen method, RosettaVS,…

  • Efficient learning of ground and thermal states within phases of matter

    We consider two related tasks: (a) estimating a parameterisation of a given Gibbs state and expectation values of Lipschitz observables on this state; (b) learning the expectation values of local observables within a thermal or quantum phase of matter. In both cases, we present sample-efficient ways to learn these properties to high precision. For the…

  • An edge-coupled magnetostatic bandpass filter

    The further development of 5G and 6G communication systems introduced new frequency allocations beyond 6 GHz, necessitating the development of compact bandpass filters that can operate over wide gigahertz frequency ranges. Herein, we report on the design, fabrication, and characterization of an edge-coupled magnetostatic forward volume wave bandpass filter (MSFVW). Using micromachining techniques, we fabricate…

  • scConfluence: single-cell diagonal integration with regularized Inverse Optimal Transport on weakly connected features

    The abundance of unpaired multimodal single-cell data has motivated a growing body of research into the development of diagonal integration methods. However, the state-of-the-art suffers from the loss of biological information due to feature conversion and struggles with modality-specific populations. To overcome these crucial limitations, we here introduce scConfluence, a method for single-cell diagonal integration.…

  • Deterministic photon source of genuine three-qubit entanglement

    Deterministic photon sources allow long-term advancements in quantum optics. A single quantum emitter embedded in a photonic resonator or waveguide may be triggered to emit one photon at a time into a desired optical mode. By coherently controlling a single spin in the emitter, multi-photon entanglement can be realized. We demonstrate a deterministic source of…

  • Structures of the Mycobacterium tuberculosis efflux pump EfpA reveal the mechanisms of transport and inhibition

    As the first identified multidrug efflux pump in Mycobacterium tuberculosis (Mtb), EfpA is an essential protein and promising drug target. However, the functional and inhibitory mechanisms of EfpA are poorly understood. Here we report cryo-EM structures of EfpA in outward-open conformation, either bound to three endogenous lipids or the inhibitor BRD-8000.3. Three lipids inside EfpA…

  • Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO(2)/CO reduction towards methanol

    Cobalt phthalocyanine immobilized on carbon nanotube has demonstrated appreciable selectivity and activity for methanol synthesis in electrocatalytic CO/CO reduction. However, discrepancies in methanol production selectivity and activity between CO and CO reduction have been observed, leading to inconclusive mechanisms for methanol production in this system. Here, we discover that the interaction between cobalt phthalocyanine molecules…

  • Sex differences in functional cortical organization reflect differences in network topology rather than cortical morphometry

    Differences in brain size between the sexes are consistently reported. However, the consequences of this anatomical difference on sex differences in intrinsic brain function remain unclear. In the current study, we investigate whether sex differences in intrinsic cortical functional organization may be associated with differences in cortical morphometry, namely different measures of brain size, microstructure,…

  • Inducible auto-phosphorylation regulates a widespread family of nucleotidyltransferase toxins

    Nucleotidyltransferases (NTases) control diverse physiological processes, including RNA modification, DNA replication and repair, and antibiotic resistance. The Mycobacterium tuberculosis NTase toxin family, MenT, modifies tRNAs to block translation. MenT toxin activity can be stringently regulated by diverse MenA antitoxins. There has been no unifying mechanism linking antitoxicity across MenT homologues. Here we demonstrate through structural,…

  • Ingestion of Bacillus cereus spores dampens the immune response to favor bacterial persistence

    Strains of the Bacillus cereus (Bc) group are sporulating bacteria commonly associated with foodborne outbreaks. Spores are dormant cells highly resistant to extreme conditions. Nevertheless, the pathological processes associated with the ingestion of either vegetative cells or spores remain poorly understood. Here, we demonstrate that while ingestion of vegetative bacteria leads to their rapid elimination…