A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes

Affiliations
  • 1Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
  • 2Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion, Israel.
  • 3Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; HHMI, Stanford University, Stanford, CA 94305, USA. Electronic address: sattely@stanford.edu.

|

Abstract

Numerous eukaryotic toxins that accumulate in geophytic plants are valuable in the clinic, yet their biosynthetic pathways have remained elusive. A notable example is the >150 Amaryllidaceae alkaloids (AmAs), including galantamine, an FDA-approved treatment for Alzheimer’s disease. We show that while AmAs accumulate to high levels in many daffodil tissues, biosynthesis is localized to nascent, growing tissue at the leaf base. A similar trend is found in the production of steroidal alkaloids (e.g., cyclopamine) in corn lily. This model of active biosynthesis enabled the elucidation of a complete set of biosynthetic genes that can be used to produce AmAs. Taken together, our work sheds light on the developmental and enzymatic logic of diverse alkaloid biosynthesis in daffodils. More broadly, it suggests a paradigm for biosynthesis regulation in monocot geophytes, where plants are protected from herbivory through active charging of newly formed cells with eukaryotic toxins that persist as above-ground tissue develops.

Related Concept Videos

JoVE Research Video for Defenses Against Pathogens and Herbivores 02:26

21.4K

Plants present a rich source of nutrients for many organisms, making it a target for herbivores and infectious agents. Plants, though lacking a proper immune system, have developed an array of constitutive and inducible defenses to fend off these attacks.

Mechanical defenses form the first line of defense in plants. The thick barrier formed by the bark protects plants from herbivores. Hard shells, modified branches like thorns, and modified leaves like spines can also discourage herbivores…

JoVE Research Video for Bioremediation 00:46

17.5K

Bioremediation is the use of prokaryotes, fungi, or plants to remove pollutants from the environment. This process has been used to remove harmful toxins in groundwater as a byproduct of agricultural run-off and also to clean up oil spills.

Agricultural Bioremediation

Bioremediation is a useful process in which microbes and bacteria are used to remove toxins and pollutants from the environment. In agricultural practices, the use of fertilizers and pesticides can result in leaching of…

JoVE Research Video for C4 Pathway and CAM 01:27

44.2K

Most plants use the C3 pathway for carbon fixation. However, some plants, such as sugar cane, corn, and cacti that grow in hot conditions, use alternative pathways to fix carbon and conserve energy loss due to photorespiration. Photorespiration is the process that occurs when the oxygen concentration is high. Under such conditions, the rubisco enzyme in the Calvin cycle binds O2 instead of CO2, which halts photosynthesis and consumes energy.
C4 Pathway
The C4 pathway is used by plants such as…

JoVE Research Video for Cell Signaling in Plants 01:25

5.0K

Plant cells communicate to coordinate their cycle of growth, flowering and fruiting, and activities in roots, shoots, and leaves in response to the changing environmental conditions. Plant signaling is distinct from animal signaling. Plants primarily utilize enzyme-linked receptors, whereas the largest class of cell-surface receptors in animals are G-protein coupled receptors (GPCRs). Unlike animals, receptor tyrosine kinases are rare in plants. Instead, plants have a diverse class of…

JoVE Research Video for Synthetic Biology 02:55

4.6K

Synthetic biology is an interdisciplinary science that involves using principles from disciplines such as engineering, molecular biology, cell biology, and systems biology. It involves remodeling existing organisms from nature or constructing completely new synthetic organisms for applications such as protein or enzyme production, bioremediation, value-added macromolecule production, and the addition of desirable traits to crops, to name a few.
Golden rice
Golden rice is a genetically modified…

JoVE Research Video for Transgenic Plants 02:50

6.7K

Recombinant DNA technology called transgenesis is often used to add a foreign gene or remove a detrimental gene from an organism. Such genetically modified organisms are called transgenic organisms.
The first-ever transgenic plant was a tobacco plant developed in 1983 that showed resistance against the tobacco mosaic virus. Since then, many transgenic plants have been developed and commercialized for improving the agricultural, ornamental, and horticultural value of a crop plant. Transgenic…