An enhanced proportional resonance controller design for the PMSM based electric vehicle drive system

Affiliations
  • 1Vellore Institute of Technology, School of Electrical Engineering, Vellore, 632014, Tamil Nadu, India.

Published on:

Abstract

Permanent magnet synchronous machine (PMSM) has proven to be a more economical traction drive system for electric vehicle (EV) applications owing to increased efficiency and high-power density. However, the drive system requires more efficient control schemes to deliver better dynamic performance irrespective of dynamic changes in the motor speed, machine parameters and disturbances. Hence, to tackle the dynamic changes, to enhance the wider operating speed, to achieve precise speed tracking capability, and improved efficiency, a novel control algorithm for the PMSM based EV is proposed in this paper. The control algorithm is implemented by adopting the merits of conventional proportional resonance (PR) and proportional integral (PI) controller. The proposed control strategy is designed with an outer PI speed regulator and the inner enhanced PR (EPR) current regulator. The uniqueness of the proposed EPR controller is that the controller is designed to damp the torsional mode oscillation owing to dynamic changes such as speed and torque regulation evading the additional control loop. The effectiveness of the control scheme is tested in MATLAB Simulink and hardware-in-loop (HIL) real time simulator RT5700. To validate the effectiveness of the proposed control scheme the results are compared with the conventional control schemes. The results presented show that the proposed control technique successfully enhances the static and dynamic performance, and resilience of the EV system. Also, the proposed scheme significantly reduces the flux ripples, torque ripples, current jitter, peak overshoot, undershoot compared to the conventional current controllers.

Related Concept Videos

JoVE Research Video for PD Controller: Design 01:26

63

In automotive engineering, car suspension systems often employ Proportional Derivative (PD) controllers to enhance performance. PD controllers are utilized to adjust the damping force in response to road conditions. A controller, acting as an amplifier with a constant gain, demonstrates proportional control, with output directly mirroring input.
Designing a continuous-data controller requires selecting and linking components like adders and integrators, which are fundamental in Proportional,…

JoVE Research Video for Time-Domain Interpretation of PD Control 01:07

38

Proportional-Derivative (PD) control is a widely used control method in various engineering systems to enhance stability and performance. In a system with only proportional control, common issues include high maximum overshoot and oscillation, observed in both the error signal and its rate of change. This behavior can be divided into three distinct phases: initial overshoot, subsequent undershoot, and gradual stabilization.
Consider the example of control of motor torque. Initially, a positive…

JoVE Research Video for PI Controller: Design 01:24

59

Proportional Integral (PI) controllers are a fundamental component in modern control systems, widely used to enhance performance and mitigate steady-state errors. They are particularly effective in applications such as automatic brightness adjustment on smartphones, where they excel at mitigating steady-state errors for step-function inputs. Unlike PD controllers, which require time-varying errors to function optimally, PI controllers leverage their integral component to address residual…

JoVE Research Video for Frequency-Domain Interpretation of PD Control 01:24

39

Proportional-Derivative (PD) controllers are widely used in fan control systems to improve stability and performance. A fan control system can be effectively represented using a Bode plot to illustrate the impact of a PD controller through its transfer function. The Bode plot visually conveys how PD control modifies the fan's response across various frequencies, providing a frequency domain interpretation of the controller's behavior.
The proportional control gain, combined with the…

JoVE Research Video for PID Controller 01:19

42

Proportional-Integral-Derivative (PID) controllers are widely used in various control systems to enhance stability and performance. In a thermostat, it adjusts heating or cooling based on the temperature difference between the actual and desired levels. They are often used in automotive speed systems, effectively managing sudden speed changes while maintaining a constant speed under varying conditions. On the other hand, PI controllers, commonly employed in voltage regulation, enhance stability…

JoVE Research Video for Time and frequency -Domain Interpretation of PI Control 01:27

35

Proportional-Integral (PI) controllers are essential in many control systems to improve stability and performance. They are commonly used in everyday devices like thermostats to enhance system damping and reduce steady-state error. When the zero in the controller's transfer function is optimally placed, the system benefits significantly in terms of stability and accuracy.
Acting as a low-pass filter, the PI controller slows the system's response and extends settling times. This requires…