Effect of alkali treatment on mechanical and water absorption properties of biodegradable wheat-straw/glass fiber reinforced epoxy hybrid composites: A sustainable alternative for conventional materials

Affiliations
  • 1Department of Materials Science and Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.

Published on:

Abstract

Fiber-reinforced polymer composites are preferred over conventional materials because of their superior strength and modulus. Previously limited due to high manufacturing costs, synthetic fibers have been replaced by some natural fibers, such as waste wheat straw fibers. Here, epoxy-based polymer composites’ mechanical and physical properties have been investigated, focusing on fiber weight ratios for both treated and untreated fiber. The research found that treated fibers display more effective mechanical qualities than untreated fibers, with a higher tensile strength of 54.4 MPa. The untreated Wheat Straw-Glass fiber reinforced composite has a less tensile strength of 26.3 MPa (10 wt% fiber). Pure resin-based composite has the most minor tensile strength at 1.52 MPa. The highest flexural strength obtained for hybrid composite is 88.76 MPa for treated fiber with epoxy resin and 49.6 MPa for untreated 30 wt % fiber. At the same time, the sole epoxy resin composite has the lowest value of 10.60 MPa. Untreated fiber (30 wt%) has the highest impact energy of 8J. Untreated wheat straw fiber absorbs more water due to its hydrophilic nature. In contrast, treated fiber exhibits better bonding and minimal water content, and the sole epoxy resin composite exhibits hydrophobic properties, resulting in less water absorption. The treated fiber displays better bonding than the untreated fiber throughout the SEM analysis. Wheat Straw fiber is mainly used for biodegradable plastic formation, housing construction, building materials, etc.

Related Concept Videos

JoVE Research Video for Alkali Aggregate Reaction in Concrete 01:26

25

The alkali-aggregate reaction in concrete involves natural siliceous minerals in aggregates reacting with alkaline hydroxides derived from cement alkalis. This reaction forms an alkali-silica gel that absorbs water, swells, and increases in volume, which is confined by the surrounding cement paste, creating internal pressures that crack and disrupt the concrete. The extent of expansion and damage can be partly attributed to the alkali-silica reaction's osmotic hydraulic pressure and the…

JoVE Research Video for Effect of Sea Water on Concrete 01:22

34

Concrete exposed to seawater can undergo degradation like the dissolution of ettringite and gypsum, increasing the material's porosity and decreasing its strength. In contrast, the crystallization of salts within the concrete's pores can cause expansion, particularly above the waterline where evaporation occurs. Nonetheless, this expansion only happens when seawater, enabled by the concrete's permeability, manages to infiltrate the structure.
Concrete in areas between tide marks,…

JoVE Research Video for Waterproofing and Anti-Bacterial Admixtures in Concrete 01:22

31

Concrete's susceptibility to water absorption is due to the capillary action within the pores of its hydrated cement paste. This action draws water in, creating the need for waterproofing admixtures to prevent such penetration. The efficacy of these admixtures is contingent upon the water pressure, with variations arising from different conditions such as rain, capillary rise, or hydrostatic pressure in structures intended to hold water.
Waterproofing admixtures render concrete hydrophobic,…