Effects of resveratrol on biochemical and structural outcomes in osteoarthritis: A systematic review and meta-analysis of preclinical studies

Affiliations
  • 1Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Malaysia.
  • 2Department of Pathology, College of Basic Medicine, Xiangnan University, 423000, Chenzhou City, China.
  • 3Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Malaysia.
  • 4Newcastle University Medicine Malaysia, 79200, Iskandar Puteri, Malaysia.

Published on:

Abstract

BACKGROUND AND OBJECTIVE

Osteoarthritis (OA) is the most common age-related disease of joints with increasing global prevalence. Persistent inflammation within the joint space is speculated to be the cause of OA. Resveratrol is an anti-inflammatory and antioxidant compound which can influence cartilage metabolism through multiple signalling pathways. This systematic review and meta-analysis aimed to summarize the therapeutic effects of resveratrol in animal models of OA.

METHODS

A comprehensive literature search was performed using PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, China Wanfang and VIP databases in May 2023. Studies on the effects of resveratrol in animal models of OA written in English or Mandarin, published from the inception of databases until the date of the search were considered.

RESULTS

Fifteen eligibility studies were included and analysed. Resveratrol was shown to inhibit the secretion of interleukin-1β, tumour necrosis factor-α, interleukin-6, nitric oxide, and apoptosis of articular chondrocytes. Joint structure as indicated by Mankin scores was restored with resveratrol in animal OA models.

CONCLUSION

Resveratrol is a potential therapeutic agent for OA based on animal studies. Further evidence from well-planned human studies would be required to validate its clinical efficacies.

Related Concept Videos

JoVE Research Video for Osteoclasts in Bone Remodeling 01:31

2.7K

Osteoclasts are cells responsible for bone resorption and remodeling. They originate from hematopoietic progenitor cells present in the bone marrow. Numerous progenitor cells fuse to form multinucleated cells, each with 10-20 nuclei. A single osteoclast has a diameter of 150 to 200 µM. These cells have ruffled borders that break down the underlying bone tissue and release minerals such as calcium into the blood in bone resorption. Osteoclasts cling to bones with their ruffled edges during…

JoVE Research Video for Bone Disorders 01:29

3.1K

Aging and its effect on bone remodeling is the most common cause of bone disorders. In young and healthy people, bone deposition and resorption happen at an equal rate to maintain optimal bone health.
Bone deposition is also affected by the levels of sex hormones like estrogen and testosterone that promote osteoblast activity and bone matrix synthesis. When the level of these hormones decreases due to aging, it causes a reduction in bone deposition. As a result, bone resorption by osteoclasts…

JoVE Research Video for Bone Structure 01:55

46.7K

Within the skeletal system, the structure of a bone, or osseous tissue, can be exemplified in a long bone, like the femur, where there are two types of osseous tissue: cortical and cancellous.

Cortical Bone

Covering the cortical, or compact bone, is a membrane called the periosteum, which contains connective tissue, capillaries, and nerves. The outer, solid layer—found along the diaphysis, the shaft—forms a dense protective shell around the medullary canal—the cavity that…

JoVE Research Video for Bone Remodeling 01:40

37.2K

Bone remodeling is a continuous and balanced process of bone resorption by osteoclasts and bone formation by osteoblasts. In adults, it helps maintain bone mass and calcium homeostasis. While mechanical stress can stimulate turnover as part of the normal maintenance and reparative process, several hormones also regulate bone remodeling.

Hormonal Control of Bone Remodeling

Parathyroid hormone (PTH) maintains homeostatic control of blood calcium levels by regulating bone resorption. PTH is…

JoVE Research Video for The JAK-STAT Signaling Pathway 01:20

7.9K

Several cytokine receptors have tightly bound Janus kinase or JAK proteins attached at their cytosolic tail. Small signaling molecules such as cytokines, growth hormones, or prolactins bind to the cytokine receptors and initiate their dimerization. The dimerization brings the cytosolic JAKs together that trans-phosphorylate and activates each other. The activated JAKs now phosphorylate cytosolic tails of the cytokine receptors, which serve as binding sites for adaptor proteins such as  SH2…