Environment-independent distribution of mutational effects emerges from microscopic epistasis

Affiliations
  • 1Department of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA, USA.
  • 2Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA.
  • 3Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Published on:

Abstract

Predicting how new mutations alter phenotypes is difficult because mutational effects vary across genotypes and environments. Recently discovered global epistasis, in which the fitness effects of mutations scale with the fitness of the background genotype, can improve predictions, but how the environment modulates this scaling is unknown. We measured the fitness effects of ~100 insertion mutations in 42 strains of in six laboratory environments and found that the global epistasis scaling is nearly invariant across environments. Instead, the environment tunes one global parameter, the background fitness at which most mutations switch sign. As a consequence, the distribution of mutational effects is predictable across genotypes and environments. Our results suggest that the effective dimensionality of genotype-to-phenotype maps across environments is surprisingly low.

Related Concept Videos

JoVE Research Video for Epistasis 01:39

41.2K

In addition to multiple alleles at the same locus influencing traits, numerous genes or alleles at different locations may interact and influence phenotypes in a phenomenon called epistasis. For example, rabbit fur can be black or brown depending on whether the animal is homozygous dominant or heterozygous at a TYRP1 locus. However, if the rabbit is also homozygous recessive at a locus on the tyrosinase gene (TYR), it will have an unshaded coat that appears white, regardless of its TYRP1…

JoVE Research Video for Epistasis Analysis 01:09

4.7K

Although Mendel chose seven unrelated traits in peas to study gene segregation, most traits involve multiple gene interactions that create a spectrum of phenotypes. When the interaction of various genes or alleles at different locations influences a phenotype, this is called epistasis. Epistasis often involves one gene masking or interfering with the expression of another (antagonistic epistasis). Epistasis often occurs when different genes are part of the same biochemical pathway. The…

JoVE Research Video for Mismatch Repair 01:20

4.4K

Organisms are capable of detecting and fixing nucleotide mismatches that occur during DNA replication. This sophisticated process requires identifying the new strand and replacing the erroneous bases with correct nucleotides. Mismatch repair is coordinated by many proteins in both prokaryotes and eukaryotes.
The Mutator Protein Family Plays a Key Role in DNA Mismatch Repair
The human genome has more than 3 billion base pairs of DNA per cell. Prior to cell division, that vast amount of genetic…

JoVE Research Video for Mutations 01:35

27.9K

Mutations are changes in the sequence of DNA. These changes can occur spontaneously or they can be induced by exposure to environmental factors. Mutations can be characterized in a number of different ways: whether and how they alter the amino acid sequence of the protein, whether they occur over a small or large area of DNA, and whether they occur in somatic cells or germline cells.
Chromosomal Alterations Are Large-Scale Mutations
While point mutations are changes in a single nucleotide in…

JoVE Research Video for Mutation, Gene Flow, and Genetic Drift 01:09

55.4K

In a population that is not at Hardy-Weinberg equilibrium, the frequency of alleles changes over time. Therefore, any deviations from the five conditions of Hardy-Weinberg equilibrium can alter the genetic variation of a given population. Conditions that change the genetic variability of a population include mutations, natural selection, non-random mating, gene flow, and genetic drift (small population size).

Mechanisms of Genetic Variation

The original sources of genetic variation are…

JoVE Research Video for Position-effect Variegation 02:32

6.1K

In 1928, a German botanist Emil Heitz observed the moss nuclei with a DNA binding dye. He observed that while some chromatin regions decondense and spread out in the interphase nucleus, others do not. He termed them euchromatin and heterochromatin, respectively. He proposed that the heterochromatin regions reflect a functionally inactive state of the genome. It was later confirmed that heterochromatin is transcriptionally repressed, and euchromatin is transcriptionally active chromatin.<br…