Failure analysis in predictive maintenance: Belt drive diagnostics with expert systems and Taguchi method for unconventional vibration features

Affiliations
  • 1Mechanical Engineering Department, University of Technology- Iraq, Baghdad, Iraq.
  • 2Mechanical Engineering Department, University of Mustansiriyah, Baghdad, Iraq.
  • 3Training and Workshops Center, University of Technology- Iraq, Baghdad, Iraq.

Published on:

Abstract

Predictive maintenance to avoid fatigue and failure enhances the reliability of mechanics, herewith, this paper explores vibrational time-domain data in advancing fault diagnosis of predictive maintenance. This study leveraged a belt-drive system with the properties: operating rotational speeds of 500-2000 RPM, belt pretensions at 70 and 150 N, and three operational cases of healthy, faulty and unbalanced, which leads to 12 studied cases. In this analysis, two one-axis piezoelectric accelerometers were utilized to capture vibration signals near the driver and pulley. Five advanced statistics were calculated during signal processing, namely Variance, Mean Absolute Deviation (MAD), Zero Crossing Rate (ZCR), Autocorrelation Coefficient, and the signal’s Energy. The Taguchi method was used to test the five selected features on the basis of Signal-to-Noise (S/N) ratio. For classifications, an expert system was used based on artificial intelligence where a Random Forest (RF) model was trained on untraditional parameters for optimizing the accuracy. The resulted 0.990 and 0.999, accuracy and AUC, demonstrate the RF model’s high dependability. Evidently, the methodology highlights the features potential when progressed into expert systems, which advances predictive maintenance strategies for belt-drive systems.

Related Concept Videos

JoVE Research Video for Flat Belts: Problem Solving 01:28

269

Flat belts are crucial in many industrial applications as they help transmit power from one pulley to another. The concept of forces and moments is used to determine the maximum moment on a pulley. For instance, consider a flat belt that wraps around two pulleys, A and B, with radii of 30 cm and 10 cm, respectively. The angle between the belt and the horizontal is 20 degrees at the pulleys. As pulley B rotates clockwise and drives pulley A, tension T2 is caused at one end of the belt, while…

JoVE Research Video for Frictional Forces on Flat Belts 01:28

770

Flat belts are commonly used in various industrial applications for transmitting power from one pulley to another. When a flat belt is wrapped around a set of pulleys, it experiences different tensions at the driving pulley ends due to the friction between the belt and pulley surface. When the pulley moves in a counterclockwise direction, the tension T2 on the opposite side of the pulley where the belt is moving away from is higher than the tension T1 on the side where the belt is moving…

JoVE Research Video for Bearings: Problem Solving 01:24

216

Understanding the calculations and concepts related to double-collar bearings is essential for engineers and designers to optimize the performance of these components in various applications. By analyzing the bearing under different conditions, one can ensure that it can withstand the forces and moments experienced during operation. This knowledge enables better decision-making when designing and selecting bearings for specific purposes and configurations. Consider a double-collar bearing with…

JoVE Research Video for Transmission Shafts: Problem Solving 01:09

124

Designing a solid shaft that transmits power from a motor to a machine tool involves a series of calculations to ensure the shaft can withstand the stresses applied by bending moments and torques. First, calculate the torque exerted on the gear, considering the power transmitted by the shaft and its rotational speed. Following this, compute the tangential forces acting on the gears, which directly relate to the torque and the gear radius.
Next, use bending moment diagrams for the shaft to…

JoVE Research Video for Design of Transmission Shafts - Stress Analysis 01:15

174

Designing a transmission shaft requires a thorough understanding of the stresses induced by bending moments and torques, especially in systems where power is transferred through gears. These forces create force-couple systems at the centers of the shaft's cross-sections, leading to both transverse and torsional loading. Although shearing stresses from transverse loads are typically smaller than those from torques and are often overlooked, the significant normal stresses from these loads…

JoVE Research Video for Angle of Twist: Problem Solving 01:13

184

An electric motor applies a torque of 700 N·m to an aluminum shaft, triggering a stable rotation. Two pulleys, B and C, are subjected to torques of 300 N·m and 400 N·m, respectively. The modulus of rigidity is provided as 25 GPa. With the knowledge of the length and diameter of each segment, the twist angle between the two pulleys can be computed. First, a section cut is made between pulleys B and C, and the cut cross-section is analyzed using a free-body diagram. Given that the…