Genomic investigation of 18,421 lines reveals the genetic architecture of rice

Affiliations
  • 1Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
  • 2State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
  • 3CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China.
  • 4State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
  • 5Key Laboratory of Plant Functional Genomics of Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
  • 6Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.

Published on:

Abstract

Understanding how numerous quantitative trait loci (QTL) shape phenotypic variation is an important question in genetics. To address this, we established a permanent population of 18,421 (18K) rice lines with reduced population structure. We generated reference-level genome assemblies of the founders and genotyped all 18K-rice lines through whole-genome sequencing. Through high-resolution mapping, 96 high-quality candidate genes contributing to variation in 16 traits were identified, including and verified as causal genes for panicle number and heading date, respectively. We identified epistatic QTL pairs and constructed a genetic interaction network with 19 genes serving as hubs. Overall, 170 masking epistasis pairs were characterized, serving as an important factor contributing to genetic background effects across diverse varieties. The work provides a basis to guide grain yield and quality improvements in rice.

Related Concept Videos

JoVE Research Video for Plant Breeding and Biotechnology 01:59

18.0K

Crop cultivation has a long history in human civilization, with records showing the cultivation of cereal plants beginning at around 8000 BC. This early plant breeding was developed primarily to provide a steady supply of food.

As humans' understanding of genetics advanced, improved crop varieties could be achieved more quickly. Artificial selection could be more directed, and crop varieties enhanced for favorable traits more quickly to produce better, more robust, or more palatable…

JoVE Research Video for Ribosome Profiling 02:24

3.3K

Ribosome profiling or ribo-sequencing is a deep sequencing technique that produces a snapshot of active translation in a cell. It selectively sequences the mRNAs protected by ribosomes to get an insight into a cell’s translation landscape at any given point in time.
Applications of ribosome profiling
Ribosome profiling has many applications, including in vivo monitoring of translation inside a particular organ or tissue type and quantifying new protein synthesis levels.
The technique…

JoVE Research Video for Pleiotropy 01:33

35.7K

Pleiotropy is the phenomenon in which a single gene impacts multiple, seemingly unrelated phenotypic traits. For example, defects in the SOX10 gene cause Waardenburg Syndrome Type 4, or WS4, which can cause defects in pigmentation, hearing impairments, and an absence of intestinal contractions necessary for elimination. This diversity of phenotypes results from the expression pattern of SOX10 in early embryonic and fetal development. SOX10 is found in neural crest cells that form melanocytes,…

JoVE Research Video for Genome-wide Association Studies-GWAS 01:11

10.3K

Genome-wide association studies or GWAS are used to identify whether common SNPs are associated with certain diseases. Suppose specific SNPs are more frequently observed in individuals with a particular disease than those without the disease. In that case, those SNPs are said to be associated with the disease. Chi-square analysis is performed to check the probability of the allele likely to be associated with the disease.
GWAS does not require the identification of the target gene involved in…

JoVE Research Video for Genomics 02:02

34.4K

Genomics is the science of genomes: it is the study of all the genetic material of an organism. In humans, the genome consists of information carried in 23 pairs of chromosomes in the nucleus, as well as mitochondrial DNA. In genomics, both coding and non-coding DNA is sequenced and analyzed. Genomics allows a better understanding of all living things, their evolution, and their diversity. It has a myriad of uses: for example, to build phylogenetic trees, to improve productivity and…

JoVE Research Video for What is Genetic Engineering? 00:49

70.8K

Overview

Genetic engineering is the process of modifying an organism’s DNA to introduce new, desirable traits. Many organisms, from bacteria to plants and animals, have been genetically modified for academic, medical, agricultural, and industrial purposes. While genetic engineering has definite benefits, ethical concerns surround modifying humans and our food supply.

Scientists can Deliberately Modify an Organism’s Genome

Genetic engineering is possible because the genetic…