Infection-induced peripheral mitochondria fission drives ER encapsulations and inter-mitochondria contacts that rescue bioenergetics

Affiliations
  • 1Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
  • 2Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany.
  • 3Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany.
  • 4Department of Virology, Institute for Integrative Biology of the Cell, CNRS UMR9198, Gif-sur-Yvette, France.
  • 5Department of Molecular Biology, Princeton University, Princeton, NJ, USA. icristea@princeton.edu.

|

Abstract

The dynamic regulation of mitochondria shape via fission and fusion is critical for cellular responses to stimuli. In homeostatic cells, two modes of mitochondrial fission, midzone and peripheral, provide a decision fork between either proliferation or clearance of mitochondria. However, the relationship between specific mitochondria shapes and functions remains unclear in many biological contexts. While commonly associated with decreased bioenergetics, fragmented mitochondria paradoxically exhibit elevated respiration in several disease states, including infection with the prevalent pathogen human cytomegalovirus (HCMV) and metastatic melanoma. Here, incorporating super-resolution microscopy with mass spectrometry and metabolic assays, we use HCMV infection to establish a molecular mechanism for maintaining respiration within a fragmented mitochondria population. We establish that HCMV induces fragmentation through peripheral mitochondrial fission coupled with suppression of mitochondria fusion. Unlike uninfected cells, the progeny of peripheral fission enter mitochondria-ER encapsulations (MENCs) where they are protected from degradation and bioenergetically stabilized during infection. MENCs also stabilize pro-viral inter-mitochondria contacts (IMCs), which electrochemically link mitochondria and promote respiration. Demonstrating a broader relevance, we show that the fragmented mitochondria within metastatic melanoma cells also form MENCs. Our findings establish a mechanism where mitochondria fragmentation can promote increased respiration, a feature relevant in the context of human diseases.

Related Concept Videos

JoVE Research Video for Translocation of Proteins into the Mitochondria 01:19

2.7K

Mitochondrial precursors are translocated to the internal subcompartments via independent mechanisms involving distinct protein machineries called translocases.
Sorting of outer membrane proteins:
Mitochondrial outer membrane proteins are of two types: the transmembrane, beta-barrel porins, and the membrane-anchored, alpha-helical proteins. Beta-barrel porin precursors are translocated by the TOM complex and inserted into the outer mitochondrial membrane by the SAM complex. In contrast,…

JoVE Research Video for The Inner Mitochondrial Membrane 01:28

3.0K

The inner mitochondrial membrane is the primary site of ATP synthesis. The inner membrane domain that forms a smooth layer adjacent to the outer membrane is called the inner boundary membrane. This domain contains membrane transporters that drive metabolites in and out of the mitochondria.  In contrast, the inner membrane network that invaginates into the matrix space is called the cristae membrane. This domain accounts for principle mitochondrial function as it accommodates the protein…

JoVE Research Video for Mitochondrial Membranes 01:45

6.3K

A single mitochondrion is a bean-shaped organelle enclosed by a double-membrane system. The outer membrane of mitochondria is smooth and contains many porins – the integral membrane transporters. Porins enable free diffusion of ions and small uncharged molecules through the outer mitochondrial membrane but limit the transport of molecules larger than 5000 Daltons. Further, the outer mitochondrial membrane forms a unique structure called membrane contact sites with other subcellular organelles,…

JoVE Research Video for Electron Transport Chain: Complex I and II 01:46

8.8K

The mitochondrial electron transport chain (ETC) is the main energy generation system in the eukaryotic cells. However, mitochondria also produce cytotoxic reactive oxygen species (ROS) due to the large electron flow during oxidative phosphorylation. While Complex I is one of the primary sources of superoxide radicals, ROS production by Complex II is uncommon and may only be observed in cancer cells with mutated complexes.
ROS generation is regulated and maintained at moderate levels necessary…

JoVE Research Video for Mitochondria 01:37

8.4K

Mitochondria are eukaryotic cellular organelles that are known to produce energy through a process called oxidative phosphorylation. Besides their primary function, mitochondria are involved in various cellular processes, including cell growth, differentiation, signaling, metabolism, and senescence. Age-related changes cause a decline in mitochondrial quality and integrity due to increased mitochondrial mutations and oxidative damage. Thus, aging can severely impact mitochondrial functions,…

JoVE Research Video for Energy to Drive Translocation 01:37

1.9K

Mitochondrial protein import is powered by two distinct energy sources: ATP hydrolysis and electrochemical potential across the inner membrane. Newly synthesized precursors are bound by cytosolic chaperones of the Hsp70 family, which guide them to the import receptors on the mitochondrial surface. Utilizing the energy of ATP hydrolysis, Hsp70 chaperones transfer these precursors to the TOM receptors on the mitochondrial outer membrane.
Generally, polypeptides are unfolded by two distinct…