KEGG: biological systems database as a model of the real world

Affiliations
  • 1Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
  • 2Pathway Solutions Inc., 2-16-3 Higashi-Shinbashi, Minato-ku, Tokyo 105-0021, Japan.
  • 3Human Genome Center, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.

Published on:

Abstract

KEGG (https://www.kegg.jp/) is a database resource for representation and analysis of biological systems. Pathway maps are the primary dataset in KEGG representing systemic functions of the cell and the organism in terms of molecular interaction and reaction networks. The KEGG Orthology (KO) system is a mechanism for linking genes and proteins to pathway maps and other molecular networks. Each KO is a generic gene identifier and each pathway map is created as a network of KO nodes. This architecture enables KEGG pathway mapping to uncover systemic features from KO assigned genomes and metagenomes. Additional roles of KOs include characterization of conserved genes and conserved units of genes in organism groups, which can be done by taxonomy mapping. A new tool has been developed for identifying conserved gene orders in chromosomes, in which gene orders are treated as sequences of KOs. Furthermore, a new dataset called VOG (virus ortholog group) is computationally generated from virus proteins and expanded to proteins of cellular organisms, allowing gene orders to be compared as VOG sequences as well. Together with these datasets and analysis tools, new types of pathway maps are being developed to present a global view of biological processes involving multiple organism groups.

Related Concept Videos

JoVE Research Video for Protein Networks 02:26

3.9K

An organism can have thousands of different proteins, and these proteins must cooperate to ensure the health of an organism. Proteins bind to other proteins and form complexes to carry out their functions. Many proteins interact with multiple other proteins creating a complex network of protein interactions.
These interactions can be represented through maps depicting protein-protein interaction networks, represented as nodes and edges. Nodes are circles that are representative of a protein,…

JoVE Research Video for IP3/DAG Signaling Pathway 01:11

9.8K

Membrane lipids such as phosphatidylinositol (PI) are precursors for several membrane-bound and soluble second messengers. Specific kinases phosphorylate PI and produce phosphorylated inositol phospholipids. One such inositol phospholipids are the  phosphatidylinositol-4,5 bisphosphate [PI(4,5)P2], present in the inner half of the lipid bilayer. Upon ligand binding, GPCR stimulates Gq proteins to turn on phospholipase Cꞵ. Activated phospholipase Cꞵ cleaves PI(4,5)P2 and…

JoVE Research Video for Physiological Pharmacokinetic Models: Assumption with Protein Binding 01:13

9

Physiological models with protein binding in pharmacokinetics offer a sophisticated approach to understanding drug disposition. These models consider drug-protein interactions, enabling them to effectively predict drug concentrations in different organs and tissues. This precision aids in accurate drug dosing, providing a significant advantage over conventional models. A key process within these models is equilibration, which ensures that drug concentrations achieve a steady state within the…

JoVE Research Video for TGF - β Signaling Pathway 01:16

6.9K

The TGF-β signaling pathway regulates cell growth, differentiation, adhesion, motility, and development. TGF-β ligands that induce TGF-β signaling are synthesized in their latent form. Several proteases or cell surface receptors such as integrins act upon the latent form, releasing the active ligand. There are three types of mammalian TGF-βs: (TGF-β1, TGF-β2, and TGF-β3) that bind as homodimers or heterodimers to TGF-β receptors. The TGF-β receptors…

JoVE Research Video for cAMP-dependent Protein Kinase Pathways 01:25

4.8K

Cyclic Adenosine Monophosphate (cAMP) is an essential second messenger that activates protein kinase A (PKA) and regulates various biological processes. A single epinephrine molecule binds to GPCR and activates several heterotrimeric G proteins, each stimulating multiple adenylyl cyclase, amplifying the signal, and synthesizing large numbers of cAMP molecules. Small changes in cAMP concentration affect PKA activity. The binding of four cAMP molecules induces a conformational change in PKA,…

JoVE Research Video for Evolutionary Relationships through Genome Comparisons 02:54

5.5K

Genome comparison is one of the excellent ways to interpret the evolutionary relationships between organisms. The basic principle of genome comparison is that if two species share a common feature, it is likely encoded by the DNA sequence conserved between both species. The advent of genome sequencing technologies in the late 20th century enabled scientists to understand the concept of conservation of domains between species and helped them to deduce evolutionary relationships across diverse…