LRPPRC and SLIRP synergize to maintain sufficient and orderly mammalian mitochondrial translation

Affiliations
  • 1Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
  • 2Department en Immunotechnology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden.
  • 3Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit,University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.

Published on:

Abstract

In mammals, the leucine-rich pentatricopeptide repeat protein (LRPPRC) and the stem-loop interacting RNA-binding protein (SLIRP) form a complex in the mitochondrial matrix that is required throughout the life cycle of most mitochondrial mRNAs. Although pathogenic mutations in the LRPPRC and SLIRP genes cause devastating human mitochondrial diseases, the in vivo function of the corresponding proteins is incompletely understood. We show here that loss of SLIRP in mice causes a decrease of complex I levels whereas other OXPHOS complexes are unaffected. We generated knock-in mice to study the in vivo interdependency of SLIRP and LRPPRC by mutating specific amino acids necessary for protein complex formation. When protein complex formation is disrupted, LRPPRC is partially degraded and SLIRP disappears. Livers from Lrpprc knock-in mice had impaired mitochondrial translation except for a marked increase in the synthesis of ATP8. Furthermore, the introduction of a heteroplasmic pathogenic mtDNA mutation (m.C5024T of the tRNAAla gene) into Slirp knockout mice causes an additive effect on mitochondrial translation leading to embryonic lethality and reduced growth of mouse embryonic fibroblasts. To summarize, we report that the LRPPRC/SLIRP protein complex is critical for maintaining normal complex I levels and that it also coordinates mitochondrial translation in a tissue-specific manner.

Related Concept Videos

JoVE Research Video for Ribosomal RNA Synthesis 02:53

12.6K

Ribosome synthesis is a highly complex and coordinated process involving more than 200 assembly factors. The synthesis and processing of ribosomal components occurs not only in the nucleolus but also in the nucleoplasm and the cytoplasm of eukaryotic cells.
Ribosome biogenesis begins with the synthesis of 5S and 45S pre-rRNAs by distinct RNA polymerases. The primary transcripts are extensively processed and modified before they are bound and folded by ribosomal proteins and assembly factors,…

JoVE Research Video for Initiation of Translation 02:33

25.8K

Initiating translation is complex because it involves multiple molecules. Initiator tRNA, ribosomal subunits, and eukaryotic initiation factors (eIFs) are all required to assemble on the initiation codon of mRNA. This process consists of several steps that are mediated by different eIFs.
First, the initiator tRNA must be selected from the pool of elongator tRNAs by eukaryotic initiation factor 2 (eIF2). The initiator tRNA (Met-tRNAi) has conserved sequence elements including modified bases at…

JoVE Research Video for Termination of Translation 01:44

21.3K

The large ribosomal subunit has several important structures essential to translation. These include the peptidyl transferase center (PTC) – which is the site where the peptide bond is formed – and a large, internal, water-filled tube through which the nascent polypeptide moves. This latter structure is called the Peptide Exit Tunnel, and it begins at the PTC and spans the body of the large ribosomal subunit. During translation, as the nascent polypeptide chain is synthesized, it passes through…

JoVE Research Video for Directing Proteins to the Rough Endoplasmic Reticulum 01:34

6.4K

The organelle-specific signaling sequences direct proteins synthesized in the cytosol to their final destination like ER, mitochondria, peroxisomes, etc. Some of the proteins directed to ER are then trafficked via vesicles to other organelles within the cell or the extracellular environment through the Golgi complex. For example, the rough ER synthesizes soluble proteins for transportation to the lysosomes or secretion out of the cell. It can also synthesize transmembrane proteins that can…

JoVE Research Video for Leaky Scanning 02:28

4.9K

During most eukaryotic translation processes, the small 40S ribosome subunit scans an mRNA from its 5' end until it encounters the first start AUG codon. The large 60S ribosomal subunit then joins the smaller one to initiate protein synthesis. The location of the translation initiation is largely determined by the nucleotides near the start codon as there may be multiple translation initiation sites present on the mRNA.  Marilyn Kozak discovered that the sequence RCCAUGG (where R…

JoVE Research Video for Translation 01:31

13.5K

Translation is the process of synthesizing proteins from the genetic information carried by messenger RNA (mRNA). Following transcription, it constitutes the final step in the expression of genes. This process is carried out by ribosomes, complexes of protein and specialized RNA molecules. Ribosomes, transfer RNA (tRNA), and other proteins produce a chain of amino acids—the polypeptide—as the end product of translation.
Translation Produces the Building Blocks of Life
Proteins are…