Multi-protein assemblies orchestrate co-translational enzymatic processing on the human ribosome

Affiliations
  • 1Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
  • 2Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany. irmi.sinning@bzh.uni-heidelberg.de.

|

Abstract

Nascent chains undergo co-translational enzymatic processing as soon as their N-terminus becomes accessible at the ribosomal polypeptide tunnel exit (PTE). In eukaryotes, N-terminal methionine excision (NME) by Methionine Aminopeptidases (MAP1 and MAP2), and N-terminal acetylation (NTA) by N-Acetyl-Transferase A (NatA), is the most common combination of subsequent modifications carried out on the 80S ribosome. How these enzymatic processes are coordinated in the context of a rapidly translating ribosome has remained elusive. Here, we report two cryo-EM structures of multi-enzyme complexes assembled on vacant human 80S ribosomes, indicating two routes for NME-NTA. Both assemblies form on the 80S independent of nascent chain substrates. Irrespective of the route, NatA occupies a non-intrusive ‘distal’ binding site on the ribosome which does not interfere with MAP1 or MAP2 binding nor with most other ribosome-associated factors (RAFs). NatA can partake in a coordinated, dynamic assembly with MAP1 through the hydra-like chaperoning function of the abundant Nascent Polypeptide-Associated Complex (NAC). In contrast to MAP1, MAP2 completely covers the PTE and is thus incompatible with NAC and MAP1 recruitment. Together, our data provide the structural framework for the coordinated orchestration of NME and NTA in protein biogenesis.

Related Concept Videos

JoVE Research Video for Ribosomes 01:27

6.4K

Ribosomes translate genetic information encoded by messenger RNA (mRNA) into proteins. Both prokaryotic and eukaryotic cells have ribosomes. Cells that synthesize large quantities of protein—such as secretory cells in the human pancreas—can contain millions of ribosomes.
Ribosome Structure and Assembly
Ribosomes are composed of ribosomal RNA (rRNA) and proteins. In eukaryotes, rRNA is transcribed from genes in the nucleolus—a part of the nucleus that specializes in ribosome…

JoVE Research Video for Ribosomal RNA Synthesis 02:53

12.6K

Ribosome synthesis is a highly complex and coordinated process involving more than 200 assembly factors. The synthesis and processing of ribosomal components occurs not only in the nucleolus but also in the nucleoplasm and the cytoplasm of eukaryotic cells.
Ribosome biogenesis begins with the synthesis of 5S and 45S pre-rRNAs by distinct RNA polymerases. The primary transcripts are extensively processed and modified before they are bound and folded by ribosomal proteins and assembly factors,…

JoVE Research Video for Protein Complex Assembly 02:41

10.1K

Proteins can form homomeric complexes with another unit of the same protein or heteromeric complexes with different types.  Most protein complexes self-assemble spontaneously via ordered pathways, while some proteins need assembly factors that guide their proper assembly. Despite the crowded intracellular environment, proteins usually interact with their correct partners and form functional complexes.
Many viruses self-assemble into a fully functional unit using the infected host cell to…

JoVE Research Video for Proteins: From Genes to Degradation 02:11

11.5K

Within a biological system, the DNA encodes the RNA, and the nucleotide sequence in the RNA further defines the amino acid sequence in the protein. This is referred to as “The Central Dogma of Molecular Biology” – a term coined by Francis Crick.  Central dogma is a firm principle in biology that defines the flow of genetic information within any life form. The two fundamental steps in central dogma are – transcription and translation.
Transcription is the synthesis of RNA…

JoVE Research Video for Post-translational Translocation of Proteins to the RER 01:27

4.9K

A sizable fraction of proteins destined for ER are first synthesized in the cell cytosol and then transported across the ER membrane–a process called post-translational translocation. Similar to cotranslationally translocated proteins, these proteins also use the Sec translocon complex to enter the ER lumen.
Targeting proteins to the ER
Hsp40 and Hsp70 chaperone molecules bind the translated proteins in the cytosol to prevent their folding. The chaperone binding helps to keep the signal…

JoVE Research Video for Improving Translational Accuracy 02:07

8.2K

Base complementarity between the three base pairs of mRNA codon and the tRNA anticodon is not a failsafe mechanism. Inaccuracies can range from a single mismatch to no correct base pairing at all. The free energy difference between the correct and nearly correct base pairs can be as small as 3 kcal/ mol. With complementarity being the only proofreading step, the estimated error frequency would be one wrong amino acid in every 100 amino acids incorporated. However, error frequencies observed in…