PERK-ATAD3A interaction provides a subcellular safe haven for protein synthesis during ER stress

Affiliations
  • 1Altos Labs, Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK.
  • 2UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 OAH, UK.
  • 3Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
  • 4Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
  • 5Altos Labs, Bay Area Institute of Science, Redwood Shores, CA 94065, USA.
  • 6The Leicester van Geest MultiOmics Facility, Leicester LE1 9HN, UK.

Published on:

Abstract

Endoplasmic reticulum (ER) stress induces the repression of protein synthesis throughout the cell. Attempts to understand how localized stress leads to widespread repression have been limited by difficulties in resolving translation rates at the subcellular level. Here, using live-cell imaging of reporter mRNA translation, we unexpectedly found that during ER stress, active translation at mitochondria was significantly protected. The mitochondrial protein ATPase family AAA domain-containing protein 3A (ATAD3A) interacted with protein kinase RNA-like endoplasmic reticulum kinase (PERK) and mediated this effect on localized translation by competing for binding with PERK’s target, eukaryotic initiation factor 2 (eIF2). PERK-ATAD3A interactions increased during ER stress, forming mitochondria-ER contact sites. Furthermore, ATAD3A binding attenuated local PERK signaling and rescued the expression of some mitochondrial proteins. Thus, PERK-ATAD3A interactions can control translational repression at a subcellular level, mitigating the impact of ER stress on the cell.

Related Concept Videos

JoVE Research Video for The Unfolded Protein Response 01:37

3.9K

The ER is the hub of protein synthesis in a cell. It has robust systems to quality control protein folding and also for degradation of terminally misfolded proteins. Under normal conditions, a small proportion of misfolded proteins that cannot be salvaged need to be transported to the cytoplasm by the ER-associated degradation or ERAD pathways. However, if the ERAD cannot handle the misfolded proteins, the cell activates the unfolded protein response or UPR to adjust the protein folding…

JoVE Research Video for Regulation of the Unfolded Protein Response 01:31

2.3K

Inositol-requiring kinase one or IRE1 is the most conserved eukaryotic unfolded protein response (UPR) receptor. It is a type I transmembrane protein kinase receptor with a distinctive site-specific RNase activity. As the binding mechanics of the misfolded proteins with the N-terminal domain of IRE-1 are unclear, three binding models — direct, indirect, and allosteric — are proposed for receptor activation. Nevertheless, it is known that once a misfolded protein associates with IRE1, it…

JoVE Research Video for Export of Misfolded Proteins out of the ER 01:32

3.0K

After folding, the ER assesses the quality of secretory and membrane proteins. The correctly folded proteins are cleared by the calnexin cycle for transport to their final destination, while misfolded proteins are held back in the ER lumen. The ER chaperones attempt to unfold and refold the misfolded proteins but sometimes fail to achieve the correct native conformation. Such terminally misfolded proteins are then exported to the cytosol by ER-associated degradation or ERAD pathway for…

JoVE Research Video for Tail-anchoring of Proteins in the ER Membrane 01:45

2.9K

Tail-anchored, or TA, proteins are estimated to make up to 3-5% of membrane proteins found in the eukaryotic cell. Such proteins have a single transmembrane domain located approximately 30 amino acid residues upstream from the C-terminal end. As a result, the signal recognition particle (SRP) cannot guide a TA protein to the ER membrane for cotranslational insertion. Hence, they are integrated into the ER membrane post-translationally using their C-terminal end as the anchor. TA proteins…

JoVE Research Video for Directing Proteins to the Rough Endoplasmic Reticulum 01:34

6.4K

The organelle-specific signaling sequences direct proteins synthesized in the cytosol to their final destination like ER, mitochondria, peroxisomes, etc. Some of the proteins directed to ER are then trafficked via vesicles to other organelles within the cell or the extracellular environment through the Golgi complex. For example, the rough ER synthesizes soluble proteins for transportation to the lysosomes or secretion out of the cell. It can also synthesize transmembrane proteins that can…

JoVE Research Video for ER Retrieval Pathway 01:45

3.4K

In the secretory pathway, vesicles transport proteins from one cellular compartment to another in forward transport to deliver the protein to its correct location. Occasionally, misfolded proteins and incorrect proteins escape their original compartments, and a retrieval pathway is used to return the escaped proteins to their original compartment.
The ER uses many checkpoints to prevent the entry of incorrectly folded or a resident protein as cargo onto a transport vesicle. These mechanisms…