Recording morphogen signals reveals mechanisms underlying gastruloid symmetry breaking

Affiliations
  • 1Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA. hmcnamara@princeton.edu.
  • 2Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
  • 3Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
  • 4Department of Molecular Biology, Princeton University, Princeton, NJ, USA. toettcher@princeton.edu.
  • 5Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA. toettcher@princeton.edu.

Published on:

Abstract

Aggregates of stem cells can break symmetry and self-organize into embryo-like structures with complex morphologies and gene expression patterns. Mechanisms including reaction-diffusion Turing patterns and cell sorting have been proposed to explain symmetry breaking but distinguishing between these candidate mechanisms of self-organization requires identifying which early asymmetries evolve into subsequent tissue patterns and cell fates. Here we use synthetic ‘signal-recording’ gene circuits to trace the evolution of signalling patterns in gastruloids, three-dimensional stem cell aggregates that form an anterior-posterior axis and structures resembling the mammalian primitive streak and tailbud. We find that cell sorting rearranges patchy domains of Wnt activity into a single pole that defines the gastruloid anterior-posterior axis. We also trace the emergence of Wnt domains to earlier heterogeneity in Nodal activity even before Wnt activity is detectable. Our study defines a mechanism through which aggregates of stem cells can form a patterning axis even in the absence of external spatial cues.

Related Concept Videos

JoVE Research Video for Gastrulation 01:56

51.7K

Gastrulation establishes the three primary tissues of an embryo: the ectoderm, mesoderm, and endoderm. This developmental process relies on a series of intricate cellular movements, which in humans transforms a flat, “bilaminar disc” composed of two cell sheets into a three-tiered structure. In the resulting embryo, the endoderm serves as the bottom layer, and stacked directly above it is the intermediate mesoderm, and then the uppermost ectoderm. Respectively, these tissue strata…

JoVE Research Video for Cell Motility through Blebbing 01:16

1.8K

Blebs are a type of membrane protrusion formed by the internal hydrostatic pressure of the cytoplasm. Blebs are observed in several cell types, including fibroblasts, immune cells, and single-celled organisms like the amoeba. The primary function of blebs is cell locomotion and apoptosis, but they are also found during necrosis and cell division. The life cycle of a bleb comprises an initiation phase followed by the expansion and retraction phases.
Blebbing Through the Matrix
In multicellular…

JoVE Research Video for Hedgehog Signaling Pathway 02:33

7.2K

The Hedgehog gene (Hh) was first discovered due to its control of the growth of disorganized, hair-like bristles phenotype in Drosophila, much like hedgehog spines. Hh plays a crucial role in the development of organs and the maintenance of homeostasis in both invertebrates and vertebrates. However, while Drosophila has only one Hh protein, mammals have multiple functional Hedgehog proteins – Sonic (Shh), Desert (Dhh), and Indian Hedgehog (Ihh). All of these homologous proteins have adapted to…

JoVE Research Video for Role Of Notch Signalling In Intestinal Stem Cell Renewal 01:12

2.0K

Notch signaling was first discovered in Drosophila melanogaster, where it is involved in cell lineage differentiation. Notch signaling regulates the maintenance and differentiation of intestinal stem cells or ISCs by controlling the expression of atonal homolog 1 or Atoh1. Atoh1 directs cells to differentiate into secretory cells.
Direct cell-to-cell contact is needed for the activation of Notch signaling. The signal is initiated when a notch ligand binds to a receptor on an adjacent cell, also…

JoVE Research Video for Mechanism of Lamellipodia Formation 01:31

2.3K

Cells migrating in response to external stimuli form lamellipodia, which are thin membrane protrusions supported by a mesh of linked, branched, or unbranched actin filaments. These actin filaments interact with myosin motor proteins, creating the dynamic actomyosin complex within the cytoskeleton. Contractility, or the ability to generate contractile stress, is inherent to the actomyosin complex. It helps cells detect the stiffness of the surrounding ECM and exert contractile force for…

JoVE Research Video for Neurulation 01:30

39.2K

Neurulation is the embryological process which forms the precursors of the central nervous system and occurs after gastrulation has established the three primary cell layers of the embryo: ectoderm, mesoderm, and endoderm. In humans, the majority of this system is formed via primary neurulation, in which the central portion of the ectoderm—originally appearing as a flat sheet of cells—folds upwards and inwards, sealing off to form a hollow neural tube. As development proceeds, the…