Ribosomal protein RPL39L is an efficiency factor in the cotranslational folding of a subset of proteins with alpha helical domains

Affiliations
  • 1Biozentrum, University of Basel, Basel, Switzerland.
  • 2Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
  • 3Cryo-EM Knowledge Hub (CEMK), ETH Zürich, Switzerland.
  • 4University of Strasbourg, UMR7156 GMGM, Strasbourg, France.
  • 5Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Switzerland.
  • 6IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.

Published on:

Abstract

Increasingly many studies reveal how ribosome composition can be tuned to optimally translate the transcriptome of individual cell types. In this study, we investigated the expression pattern, structure within the ribosome and effect on protein synthesis of the ribosomal protein paralog 39L (RPL39L). With a novel mass spectrometric approach we revealed the expression of RPL39L protein beyond mouse germ cells, in human pluripotent cells, cancer cell lines and tissue samples. We generated RPL39L knock-out mouse embryonic stem cell (mESC) lines and demonstrated that RPL39L impacts the dynamics of translation, to support the pluripotency and differentiation, spontaneous and along the germ cell lineage. Most differences in protein abundance between WT and RPL39L KO lines were explained by widespread autophagy. By CryoEM analysis of purified RPL39 and RPL39L-containing ribosomes we found that, unlike RPL39, RPL39L has two distinct conformations in the exposed segment of the nascent peptide exit tunnel, creating a distinct hydrophobic patch that has been predicted to support the efficient co-translational folding of alpha helices. Our study shows that ribosomal protein paralogs provide switchable modular components that can tune translation to the protein production needs of individual cell types.

Related Concept Videos

JoVE Research Video for Cotranslational Protein Translocation 01:20

6.2K

Translocation of proteins across membranes is an ancient process that occurs even in bacteria and archaebacteria. In fact, the components of the translocation machinery are still conserved between prokaryotes and eukaryotes.
Sec61 channel partners for cotranslational translocation
During cotranslational translocation, the Sec61 channel partners with the signal recognition particle (SRP), the signal recognition particle receptor (SR), and the ribosomes to transport the nascent polypeptide chain…

JoVE Research Video for Ribosomal RNA Synthesis 02:53

12.6K

Ribosome synthesis is a highly complex and coordinated process involving more than 200 assembly factors. The synthesis and processing of ribosomal components occurs not only in the nucleolus but also in the nucleoplasm and the cytoplasm of eukaryotic cells.
Ribosome biogenesis begins with the synthesis of 5S and 45S pre-rRNAs by distinct RNA polymerases. The primary transcripts are extensively processed and modified before they are bound and folded by ribosomal proteins and assembly factors,…

JoVE Research Video for Directing Proteins to the Rough Endoplasmic Reticulum 01:34

6.4K

The organelle-specific signaling sequences direct proteins synthesized in the cytosol to their final destination like ER, mitochondria, peroxisomes, etc. Some of the proteins directed to ER are then trafficked via vesicles to other organelles within the cell or the extracellular environment through the Golgi complex. For example, the rough ER synthesizes soluble proteins for transportation to the lysosomes or secretion out of the cell. It can also synthesize transmembrane proteins that can…

JoVE Research Video for Post-translational Translocation of Proteins to the RER 01:27

4.8K

A sizable fraction of proteins destined for ER are first synthesized in the cell cytosol and then transported across the ER membrane–a process called post-translational translocation. Similar to cotranslationally translocated proteins, these proteins also use the Sec translocon complex to enter the ER lumen.
Targeting proteins to the ER
Hsp40 and Hsp70 chaperone molecules bind the translated proteins in the cytosol to prevent their folding. The chaperone binding helps to keep the signal…

JoVE Research Video for Ribosomes 01:27

6.4K

Ribosomes translate genetic information encoded by messenger RNA (mRNA) into proteins. Both prokaryotic and eukaryotic cells have ribosomes. Cells that synthesize large quantities of protein—such as secretory cells in the human pancreas—can contain millions of ribosomes.
Ribosome Structure and Assembly
Ribosomes are composed of ribosomal RNA (rRNA) and proteins. In eukaryotes, rRNA is transcribed from genes in the nucleolus—a part of the nucleus that specializes in ribosome…

JoVE Research Video for Termination of Translation 01:44

21.3K

The large ribosomal subunit has several important structures essential to translation. These include the peptidyl transferase center (PTC) – which is the site where the peptide bond is formed – and a large, internal, water-filled tube through which the nascent polypeptide moves. This latter structure is called the Peptide Exit Tunnel, and it begins at the PTC and spans the body of the large ribosomal subunit. During translation, as the nascent polypeptide chain is synthesized, it passes through…