TGF-β and RAS jointly unmask primed enhancers to drive metastasis

Affiliations
  • 1Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • 2Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
  • 3Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
  • 4Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • 5Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
  • 6Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • 7Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • 8Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
  • 9Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • 10Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address: massaguj@mskcc.org.

|

Abstract

Epithelial-to-mesenchymal transitions (EMTs) and extracellular matrix (ECM) remodeling are distinct yet important processes during carcinoma invasion and metastasis. Transforming growth factor β (TGF-β) and RAS, signaling through SMAD and RAS-responsive element-binding protein 1 (RREB1), jointly trigger expression of EMT and fibrogenic factors as two discrete arms of a common transcriptional response in carcinoma cells. Here, we demonstrate that both arms come together to form a program for lung adenocarcinoma metastasis and identify chromatin determinants tying the expression of the constituent genes to TGF-β and RAS inputs. RREB1 localizes to H4K16acK20ac marks in histone H2A.Z-loaded nucleosomes at enhancers in the fibrogenic genes interleukin-11 (IL11), platelet-derived growth factor-B (PDGFB), and hyaluronan synthase 2 (HAS2), as well as the EMT transcription factor SNAI1, priming these enhancers for activation by a SMAD4-INO80 nucleosome remodeling complex in response to TGF-β. These regulatory properties segregate the fibrogenic EMT program from RAS-independent TGF-β gene responses and illuminate the operation and vulnerabilities of a bifunctional program that promotes metastatic outgrowth.

Related Concept Videos

JoVE Research Video for TGF - β Signaling Pathway 01:16

6.9K

The TGF-β signaling pathway regulates cell growth, differentiation, adhesion, motility, and development. TGF-β ligands that induce TGF-β signaling are synthesized in their latent form. Several proteases or cell surface receptors such as integrins act upon the latent form, releasing the active ligand. There are three types of mammalian TGF-βs: (TGF-β1, TGF-β2, and TGF-β3) that bind as homodimers or heterodimers to TGF-β receptors. The TGF-β receptors…

JoVE Research Video for Mitogens and the Cell Cycle 02:38

6.2K

Mitogens and their receptors play a crucial role in controlling the progression of the cell cycle. However, the loss of mitogenic control over cell division leads to tumor formation. Therefore, mitogens and mitogen receptors play an important role in cancer research. For instance, the epidermal growth factor (EGF) – a type of mitogen and its transmembrane receptor (EGFR), decides the fate of the cell's proliferation. When EGF binds to EGFR, a member of the ErbB family of tyrosine kinase…

JoVE Research Video for MAPK Signaling Cascades 01:07

4.7K

Mitogen-activated protein kinase, or MAPK pathway, activates three sequential kinases to regulate cellular responses such as proliferation, differentiation, survival, and apoptosis. The canonical MAPK pathway starts with a mitogen or growth factor binding to an RTK. The activated RTKs stimulate Ras, which recruits Raf or MAP3 Kinase (MAPKKK), the first kinase of the MAPK signaling cascade. Raf further phosphorylates and activates MEK or MAP2 Kinases (MAPKK), which in turn phosphorylates MAP…

JoVE Research Video for The Ras Gene 02:38

5.9K

The Ras-gene-encoded proteins are regulators of signaling pathways controlling cell proliferation, differentiation, or cell survival. The Ras-gene family in humans constitutes three primary members—the HRas, NRas, and KRas. These genes code for four functionally distinct yet closely related proteins—the HRas, NRas, KRas4A, and KRas4B. The involvement of mutant Ras genes in human cancer was first discovered in 1982 and is among the most common causes of human tumorigenesis.
Ras is a…

JoVE Research Video for Metastasis 02:30

5.1K

Metastasis is the spread of cancer cells from the original site to distant locations in the body. Cancer cells can spread via blood vessels (hematogenous) as well as lymph vessels in the body.
Epithelial-to-Mesenchymal Transition
The epithelial-to-mesenchymal transition or EMT is a developmental process commonly observed in wound healing, embryogenesis, and cancer metastasis. EMT is induced by transforming growth factor-beta (TGF-β) or receptor tyrosine kinase (RTK) ligands, which further…

JoVE Research Video for Small GTPases - Ras and Rho 01:24

3.7K

Ras and Rho are small monomeric GTPases that act downstream of receptor tyrosine kinase (RTK) and regulate various cellular processes. These GTPases switch between active and inactive states by binding to guanine nucleotides.
Three regulatory proteins control their activity:

Guanine nucleotide exchange factors or GEF,
GTPase-activating proteins or GAPs, and
Guanine nucleotide-dissociation inhibitors or GDIs.

The GEF activates the GTPase by exchanging the bound-GDP with GTP. The…