The choroid plexus synergizes with immune cells during neuroinflammation

Affiliations
  • 1Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA.
  • 2Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • 3Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.
  • 4Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA.
  • 5Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
  • 6Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard College, Harvard University, Cambridge, MA 02138, USA.
  • 7Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.

|

Abstract

The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.

Related Concept Videos

JoVE Research Video for Glial Cells 01:04

82.5K

Overview

Glial cells are one of the two main types of cells in the nervous system. Glia cells comprise astrocytes, oligodendrocytes, microglia, and ependymal cells in the central nervous system, and satellite and Schwann cells in the peripheral nervous system. These cells do not communicate via electrical signals like neurons do, but they contribute to virtually every other aspect of nervous system function. In humans, the number of glial cells is roughly equal to the number of neurons in the…

JoVE Research Video for Nervous Tissue: Glial Cells 01:31

1.3K

Glia, or neuroglia, are vital support cells that assist neurons in their functions. The term "glia" originates from the Greek word for "glue," reflecting their role in holding the nervous system together. These cells can be categorized into six types: four in the central nervous system (CNS) and two in the peripheral nervous system (PNS).
The CNS glial cell includes the astrocytes, the oligodendrocytes, the microglia, and the ependymal cells.
Astrocytes are star-shaped glial…

JoVE Research Video for The Blood-brain Barrier 00:49

44.9K

Overview

The blood-brain barrier (BBB) refers to the specialized vasculature that provides the brain with nutrients in the blood while strictly regulating the movement of ions, molecules, pathogens, and other substances. It is composed of tightly linked endothelial cells on one side and astrocyte projections on the other. Together they provide a semipermeable barrier that protects the brain and poses unique challenges to the delivery of therapeutics.

Cellular Components

The BBB is made up of…

JoVE Research Video for Neurogenesis and Regeneration of Nervous Tissue 01:15

462

In the CNS, neurogenesis, the birth of new neurons from stem cells, is limited to the hippocampus in adults. In other regions of the brain and spinal cord, neurogenesis is almost non-existent due to inhibitory influences from neuroglia, especially oligodendrocytes, and the absence of growth-stimulating cues. The myelin produced by oligodendrocytes in the CNS inhibits neuronal regeneration. Furthermore, astrocytes proliferate rapidly after neuronal damage, forming scar tissue that physically…

JoVE Research Video for T Cell Types and Functions 01:24

351

When T cells with CD4 markers are activated, they give rise to two types of effector cells: helper T cells and regulatory T cells. Meanwhile, T cells with CD8 markers differentiate into effector cytotoxic T cells. The differentiation of CD4 T cells into helper T cell subsets, such as Th1, Th2, and Th17 cells, is dependent on the antigen type, antigen-presenting cell, and regulatory cytokines.
Th1 cells stimulate dendritic cells to express necessary co-stimulatory molecules on their surfaces for…