The evolution of heteroresistance via small colony variants in Escherichia coli following long term exposure to bacteriostatic antibiotics

Affiliations
  • 1Department of Biology, Emory University, Atlanta, GA, 30322, USA.
  • 2Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, 30322, USA.
  • 3Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, and Centro de Investigación Médica en Red, Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
  • 4Department of Biology, Emory University, Atlanta, GA, 30322, USA. blevin@emory.edu.

|

Abstract

Traditionally, bacteriostatic antibiotics are agents able to arrest bacterial growth. Despite being traditionally viewed as unable to kill bacterial cells, when they are used clinically the outcome of these drugs is frequently as effective as when a bactericidal drug is used. We explore the dynamics of Escherichia coli after exposure to two ribosome-targeting bacteriostatic antibiotics, chloramphenicol and azithromycin, for thirty days. The results of our experiments provide evidence that bacteria exposed to these drugs replicate, evolve, and generate a sub-population of small colony variants (SCVs) which are resistant to multiple drugs. These SCVs contribute to the evolution of heteroresistance and rapidly revert to a susceptible state once the antibiotic is removed. Stated another way, exposure to bacteriostatic drugs selects for the evolution of heteroresistance in populations previously lacking this trait. More generally, our results question the definition of bacteriostasis as populations exposed to bacteriostatic drugs are replicating despite the lack of net growth.

Related Concept Videos

JoVE Research Video for Antibiotic Selection 00:57

50.8K

Overview

Researchers use antibiotic resistance genes to identify bacteria that possess a plasmid containing their gene of interest. Antibiotic resistance naturally occurs when a spontaneous DNA mutation creates changes in bacterial genes that eliminate antibiotic activity. Bacteria can share these new resistance genes with their offspring and other bacteria. The overuse and misuse of antibiotics have created a public health crisis, as resistant and multi-resistant bacteria continue to develop.<br…

JoVE Research Video for Genomic DNA in Prokaryotes 00:46

41.4K

The genome of most prokaryotic organisms consists of double-stranded DNA organized into one circular chromosome in a region of cytoplasm called the nucleoid. The chromosome is tightly wound, or supercoiled, for efficient storage. Prokaryotes also contain other circular pieces of DNA called plasmids. These plasmids are smaller than the chromosome and often carry genes that confer adaptive functions, such as antibiotic resistance.
Genomic Diversity in Bacteria
Although bacterial genomes are much…

JoVE Research Video for Defense Against Bacterial Pathogens 01:31

689

The human immune system is a complex network of cells, tissues, and organs that work together to defend the body against bacterial infections. It consists of various immune cells, each playing a specific role in the defense mechanism.
Phagocytes
Phagocytes are the frontline soldiers of the immune system. They include neutrophils and macrophages. Neutrophils are the most abundant type of white blood cell and are quickly mobilized to the site of infection. Macrophages are larger cells that patrol…

JoVE Research Video for Mismatch Repair 01:36

38.1K

Overview

Organisms are capable of detecting and fixing nucleotide mismatches that occur during DNA replication. This sophisticated process requires identifying the new strand and replacing the erroneous bases with correct nucleotides. Mismatch repair is coordinated by many proteins in both prokaryotes and eukaryotes.

The Mutator Protein Family Plays a Key Role in DNA Mismatch Repair

The human genome has more than 3 billion base pairs of DNA per cell. Prior to cell division, that vast amount…