The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring

Affiliations
  • 1Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.
  • 2Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
  • 3Killybegs Fishermen’s Organisation, Donegal, Ireland.
  • 4Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA. leif.andersson@imbim.uu.se.
  • 5Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. leif.andersson@imbim.uu.se.

Published on:

Abstract

Chromosomal inversions are associated with local adaptation in many species. However, questions regarding how they are formed, maintained and impact various other evolutionary processes remain elusive. Here, using a large genomic dataset of long-read and short-read sequencing, we ask these questions in one of the most abundant vertebrates on Earth, the Atlantic herring. This species has four megabase-sized inversions associated with ecological adaptation that correlate with water temperature. The S and N inversion alleles at these four loci dominate in the southern and northern parts, respectively, of the species distribution in the North Atlantic Ocean. By determining breakpoint coordinates of the four inversions and the structural variations surrounding them, we hypothesize that these inversions are formed by ectopic recombination between duplicated sequences immediately outside of the inversions. We show that these are old inversions (>1 MY), albeit formed after the split between the Atlantic herring and its sister species, the Pacific herring. There is evidence for extensive gene flux between inversion alleles at all four loci. The large Ne of herring combined with the common occurrence of opposite homozygotes across the species distribution has allowed effective purifying selection to prevent the accumulation of genetic load and repeats within the inversions.

Related Concept Videos

JoVE Research Video for Gene Flow 02:39

32.7K

Gene flow is the transfer of genes among populations, resulting from either the dispersal of gametes or from the migration of individuals.

This phenomenon plays a significant evolutionary role in all organisms, and depending on the rates of gene flow, the mechanism either induces genetic diversity or generates genetic homogeneity among populations. When the rate of gene flow is low, the introduction of new alleles into a population generates genetic diversity. On the other hand, a high rate of…

JoVE Research Video for Formation of Species 01:31

36.9K

Speciation describes the formation of one or more new species from one or sometimes multiple original species. The resulting species are discrete from the parent species, and barriers to reproduction will typically exist. There are two primary mechanisms, speciation with and without geographic isolation—allopatric and sympatric speciation, respectively.

Allopatric Speciation

In allopatric speciation, gene flow between two populations of the same species is prevented by a geographic…

JoVE Research Video for Genetics of Speciation 02:16

17.8K

Speciation is the evolutionary process resulting in the formation of new, distinct species—groups of reproductively isolated populations.

The genetics of speciation involves the different traits or isolating mechanisms preventing gene exchange, leading to reproductive isolation. Reproductive isolation can be due to reproductive barriers that have effects either before or after the formation of a zygote. Pre-zygotic mechanisms prevent fertilization from occurring, and post-zygotic…

JoVE Research Video for Speciation Rates 01:07

19.8K

Overview

Speciation usually occurs over a long evolutionary time scale, during which the species may be isolated or continue to interact. If two emerging species start to interbreed, reproductive barriers may be weak, and gene flow can occur again. At this point, the selection of hybrids across the two populations may either stabilize the newly mixed group into a single population or reinforce the distinction between them as new species. Speciation may occur gradually or rapidly, and in some…

JoVE Research Video for Genome Size and the Evolution of New Genes 03:21

7.6K

While every living organism has a genome of some kind (be it RNA, or DNA), there is considerable variation in the sizes of these blueprints. One major factor that impacts genome size is whether the organism is prokaryotic or eukaryotic. In prokaryotes, the genome contains little to no non-coding sequence, such that genes are tightly clustered in groups or operons sequentially along the chromosome. Conversely, the genes in eukaryotes are punctuated by long stretches of non-coding sequence.

JoVE Research Video for Mutation, Gene Flow, and Genetic Drift 01:09

55.4K

In a population that is not at Hardy-Weinberg equilibrium, the frequency of alleles changes over time. Therefore, any deviations from the five conditions of Hardy-Weinberg equilibrium can alter the genetic variation of a given population. Conditions that change the genetic variability of a population include mutations, natural selection, non-random mating, gene flow, and genetic drift (small population size).

Mechanisms of Genetic Variation

The original sources of genetic variation are…