Visualization of the Cdc48 AAA+ ATPase protein unfolding pathway

Affiliations
  • 1Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
  • 2Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
  • 3Department of Biochemistry, University of Utah, Salt Lake City, UT, USA. chris@biochem.utah.edu.
  • 4Department of Biochemistry, University of Utah, Salt Lake City, UT, USA. peter.shen@biochem.utah.edu.

|

Abstract

The Cdc48 AAA+ ATPase is an abundant and essential enzyme that unfolds substrates in multiple protein quality control pathways. The enzyme includes two conserved AAA+ ATPase motor domains, D1 and D2, that assemble as hexameric rings with D1 stacked above D2. Here, we report an ensemble of native structures of Cdc48 affinity purified from budding yeast lysate in complex with the adaptor Shp1 in the act of unfolding substrate. Our analysis reveals a continuum of structural snapshots that spans the entire translocation cycle. These data uncover elements of Shp1-Cdc48 interactions and support a ‘hand-over-hand’ mechanism in which the sequential movement of individual subunits is closely coordinated. D1 hydrolyzes ATP and disengages from substrate prior to D2, while D2 rebinds ATP and re-engages with substrate prior to D1, thereby explaining the dominant role played by the D2 motor in substrate translocation/unfolding.

Related Concept Videos

JoVE Research Video for Molecular Chaperones and Protein Folding 03:00

17.2K

The native conformation of a protein is formed by interactions between the side chains of its constituent amino acids. When the amino acids cannot form these interactions, the protein cannot fold by itself and needs chaperones. Notably, chaperones do not relay any additional information required for the folding of polypeptides; the native conformation of a protein is determined solely by its amino acid sequence. Chaperones catalyze protein folding without being a part of the folded protein.
The…

JoVE Research Video for Export of Misfolded Proteins out of the ER 01:32

3.0K

After folding, the ER assesses the quality of secretory and membrane proteins. The correctly folded proteins are cleared by the calnexin cycle for transport to their final destination, while misfolded proteins are held back in the ER lumen. The ER chaperones attempt to unfold and refold the misfolded proteins but sometimes fail to achieve the correct native conformation. Such terminally misfolded proteins are then exported to the cytosol by ER-associated degradation or ERAD pathway for…

JoVE Research Video for The Proteasome Structure 01:17

520

The ubiquitin-proteasome pathway is a well-known mechanism utilized by eukaryotic cells to remove cytoplasmic proteins that are misfolded, damaged, or no longer needed. In this pathway, the protein that needs to be eliminated undergoes a process called ubiquitination, where a chain of ubiquitin molecules is attached to the 48th lysine residue of the target protein. This ubiquitin modification helps the proteasome distinguish between a target protein and a healthy protein.
The proteasome is an…

JoVE Research Video for ATP Synthase: Structure 01:18

11.4K

ATP synthase or ATPase is among the most conserved proteins found in bacteria, mammals, and plants. This enzyme can catalyze a forward reaction in response to the electrochemical gradient, producing ATP from ADP and inorganic phosphate. ATP synthase can also work in a reverse direction by hydrolyzing ATP and generating an electrochemical gradient. Different forms of ATP synthases have evolved special features to meet the specific demands of the cell. Based on their specific feature, ATP…

JoVE Research Video for The Unfolded Protein Response 01:37

3.9K

The ER is the hub of protein synthesis in a cell. It has robust systems to quality control protein folding and also for degradation of terminally misfolded proteins. Under normal conditions, a small proportion of misfolded proteins that cannot be salvaged need to be transported to the cytoplasm by the ER-associated degradation or ERAD pathways. However, if the ERAD cannot handle the misfolded proteins, the cell activates the unfolded protein response or UPR to adjust the protein folding…

JoVE Research Video for Protein Folding 01:25

6.8K

Proteins are chains of amino acids linked together by peptide bonds. Upon synthesis, a protein folds into a three-dimensional conformation, critical to its biological function. Interactions between its constituent amino acids guide protein folding, and hence the protein structure is primarily dependent on its amino acid sequence.
Protein Structure Is Critical to Its Biological Function
Proteins perform a wide range of biological functions such as catalyzing chemical reactions, providing…