webTWAS 2.0: update platform for identifying complex disease susceptibility genes through transcriptome-wide association study

Affiliations
  • 1Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University,101 Longmian Ave, Nanjing, Jiangsu 211166, China.
  • 2Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania-Perelman School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA.
  • 3Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300203, China.
  • 4Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, 1 Chengdian Road, Quzhou, Zhejiang 324003, China.

Published on:

Abstract

Transcriptome-wide association study (TWAS) has successfully identified numerous complex disease susceptibility genes in the post-genome-wide association study (GWAS) era. Over the past 3 years, the focus of TWAS algorithms has shifted from merely identifying associations to understanding how single nucleotide polymorphisms (SNPs) regulate gene expression, with a growing emphasis on incorporating fine-mapping techniques. Additionally, the rapid increase in GWAS summary statistics, driven largely by the UK Biobank and other consortia, has made it essential to update our webTWAS resource. To address these challenges and meet the growing needs of researchers, we developed webTWAS 2.0, an updated platform for identifying susceptibility genes for human complex diseases using TWAS. Additionally, webTWAS 2.0 provides an online TWAS analysis tool that simplifies conducting TWAS analyses. The updated resource includes 7247 GWAS summary statistics covering 1588 complex human diseases from 192 publications. It also incorporates multiple TWAS methods, such as sTF-TWAS, 3’aTWAS and GIFT, along with an updated interactive visualization tool that allows users to easily explore significant associations across different methods. Other upgrades include a personalized online analysis tool for user-submitted GWAS data and a refined search function that makes it easier to identify relevant associations and meet diverse user needs more efficiently. webTWAS 2.0 is freely accessible at http://www.webtwas.net.

Related Concept Videos

JoVE Research Video for Genome-wide Association Studies-GWAS 01:11

10.3K

Genome-wide association studies or GWAS are used to identify whether common SNPs are associated with certain diseases. Suppose specific SNPs are more frequently observed in individuals with a particular disease than those without the disease. In that case, those SNPs are said to be associated with the disease. Chi-square analysis is performed to check the probability of the allele likely to be associated with the disease.
GWAS does not require the identification of the target gene involved in…

JoVE Research Video for Single Nucleotide Polymorphisms-SNPs 01:05

11.7K

A single nucleotide polymorphism or SNP is a single nucleotide variation at a specific genomic position in a large population. It is the most prevalent type of sequence variation found in the human genome. Point mutations that occur in more than 1% of the population qualify as SNPs. These are present once every 1000 nucleotides on an average in the human genome. Replacement of a purine with another purine (A/G) or a pyrimidine with another pyrimidine (C/T) is known as a transition. In contrast,…

JoVE Research Video for Genomics 02:02

34.4K

Genomics is the science of genomes: it is the study of all the genetic material of an organism. In humans, the genome consists of information carried in 23 pairs of chromosomes in the nucleus, as well as mitochondrial DNA. In genomics, both coding and non-coding DNA is sequenced and analyzed. Genomics allows a better understanding of all living things, their evolution, and their diversity. It has a myriad of uses: for example, to build phylogenetic trees, to improve productivity and…

JoVE Research Video for DNA Microarrays 02:34

16.5K

Microarrays are high-throughput and relatively inexpensive assays that can be automated to analyze large quantities of data at a time. They are used in genome-wide studies to compare gene or protein expression under two varied conditions, such as healthy and diseased states. Microarrays consist of glass or silica slides on which probe molecules are covalently attached through surface functionalization. Most commonly, the slides are prepared through the chemisorption of silanes to silica…

JoVE Research Video for Human Genetics 01:28

334

Human genetics provides a profound framework for understanding the interplay between genetic predispositions and human psychology. At the heart of this discipline lies the study of how genes influence physical traits, behaviors, and susceptibility to diseases. Each person carries a unique genetic code that subtly or significantly shapes their psychological and behavioral landscape.
The complex relationship between genetics and psychology is observable through common biological components such…

JoVE Research Video for Cancer-Critical Genes II: Tumor Suppressor Genes 01:05

6.3K

Genes usually encode proteins necessary for the proper functioning of a healthy cell. Mutations can often cause changes to the gene expression pattern, thereby altering the phenotype.
When the function of certain critical genes, especially those involved in cell cycle regulation and cell growth signaling cascades, gets disrupted, it upsets the cell cycle progression. Such cells with unchecked cell cycles start proliferating uncontrollably and eventually develop into tumors.
Such genes that act…