Allostery at a Protein-Protein Interface Harboring an Intermolecular Motional Network

Affiliations
  • 1Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.

Published on:

Abstract

Motional properties of proteins govern recognition, catalysis, and regulation. The dynamics of tightly interacting residues can form intramolecular dynamic networks, dependencies fine-tuned by evolution to optimize a plethora of functional aspects. The constructive interaction of residues from different proteins to assemble intermolecular dynamic networks is a similarly likely case but has escaped thorough experimental assessment due to interfering association/dissociation dynamics. Here, we use fast-MAS solid-state N R NMR relaxation dispersion aided by molecular-dynamics simulations to mechanistically assess the hierarchy of individual μs timescale motions arising from a crystal-crystal contact, in the absence of translational motion. In contrast to the monomer, where particular mutations entail isolated perturbations, specific intermolecular interactions couple the motional properties between distant residues in the same protein. The mechanistic insights obtained from this conceptual work may improve our understanding on how intramolecular allostery can be tuned by intermolecular interactions via assembly of dynamic networks from previously isolated elements.

Related Concept Videos

JoVE Research Video for Protein-protein Interfaces 02:04

12.3K

Many proteins form complexes to carry out their functions, making protein-protein interactions (PPIs) essential for an organism's survival. Most PPIs are stabilized by numerous weak noncovalent chemical forces. The physical shape of the interfaces determines the way two proteins interact. Many globular proteins have closely-matching shapes on their surfaces, which form a large number of weak bonds. Additionally, many PPIs occur between two helices or between a surface cleft and a…

JoVE Research Video for Protein-Protein Interfaces 02:04

3.5K

Motional properties of proteins govern recognition, catalysis, and regulation. The dynamics of tightly interacting residues can form intramolecular dynamic networks, dependencies fine-tuned by evolution to optimize a plethora of functional aspects. The constructive interaction of residues from different proteins to assemble intermolecular dynamic networks is a similarly likely case but has escaped thorough experimental assessment […]

JoVE Research Video for Protein Networks 02:26

3.9K

An organism can have thousands of different proteins, and these proteins must cooperate to ensure the health of an organism. Proteins bind to other proteins and form complexes to carry out their functions. Many proteins interact with multiple other proteins creating a complex network of protein interactions.
These interactions can be represented through maps depicting protein-protein interaction networks, represented as nodes and edges. Nodes are circles that are representative of a protein,…

JoVE Research Video for Cooperative Allosteric Transitions 01:58

7.6K

Cooperative allosteric transitions can occur in multimeric proteins, where each subunit of the protein has its own ligand-binding site. When a ligand binds to any of these subunits, it triggers a conformational change that affects the binding sites in the other subunits; this can change the affinity of the other sites for their respective ligands. The ability of the protein to change the shape of its binding site is attributed to the presence of a mix of flexible and stable segments in the…

JoVE Research Video for Protein Complexes with Interchangeable Parts 01:57

2.5K

Groups of proteins may form a complex where each protein in this complex has a different role in the overall execution of the complex’s function. Often some of the proteins in the complex can be replaced by a closely related variant to give a complex that contains many of the same components yet is functionally distinct.
The SCF ubiquitin ligase is a protein complex of five individual proteins. This complex attaches ubiquitin to other target proteins to mark them for degradation. In order…

JoVE Research Video for Noncovalent Attractions in Biomolecules 02:35

37.4K

Noncovalent attractions are associations within and between molecules that influence the shape and structural stability of complexes. These interactions differ from covalent bonding in that they do not involve sharing of electrons.
Four types of noncovalent interactions are hydrogen bonds, van der Waals forces, ionic bonds, and hydrophobic interactions.
Hydrogen bonding results from the electrostatic attraction of a hydrogen atom covalently bonded to a strong-electronegative atom like oxygen,…