Solvent-Controlled Enantiodivergent Construction of P(V)-Stereogenic Molecules via Palladium-Catalyzed Annulation of Prochiral N-Aryl Phosphonamides with Aromatic Iodides

Affiliations
  • 1Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
  • 2Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.

Published on:

Abstract

In this work, we describe an efficient and modular method for enantiodivergent accessing P(V)-stereogenic molecules by utilizing the catalytic atroposelective Catellani-type C-H arylation/desymmetric intramolecular N-arylation cascade reaction. The enantioselectivity of this protocol was proved to be tuned by the polarity of the solvent, thus providing a wide range of both chiral P(V)-stereogenic enantiomers in moderate to good yields with good to excellent enantiomeric excesses. Noteworthy is that the strategy developed herein represents an unprecedented example of solvent-dictated inversion of the enantioselectivity of P(V)-stereogenic compounds.

Related Concept Videos

JoVE Research Video for Diels–Alder Reaction Forming Bridged Bicyclic Products: Stereochemistry 01:29

3.6K

Diels–Alder reactions between cyclic dienes locked in an s-cis configuration and dienophiles yield bridged bicyclic products.

Dienophiles with one or more electron-withdrawing substituents form stereochemically different products in which the substituents are oriented in an endo (towards) or exo (away) configuration relative to the double bond.

The endo isomer is formed faster and is the kinetic product. The exo isomer is more stable and is the thermodynamic…

JoVE Research Video for SN2 Reaction: Stereochemistry 02:23

8.2K

In an SN2 reaction, the nucleophilic attack on the substrate and departure of the leaving group occurs simultaneously through a transition state. As the nucleophile approaches the substrate from the back-side, the configuration of the substrate carbon changes from tetrahedral to trigonal bipyramidal and then back to tetrahedral, leading to an inversion in the configuration of the product.
If the substrate is an achiral molecule at the α-carbon, the inversion of configuration is not…

JoVE Research Video for Regioselectivity of Electrophilic Additions to Alkenes: Markovnikov's Rule 02:17

11.5K

If a set of reactants can yield multiple constitutional isomers, but one of the isomers is obtained as the major product, the reaction is said to be regioselective. In such reactions, bond formation or breaking is favored at one reaction site over others.
The hydrohalogenation of an unsymmetrical alkene can yield two haloalkane products, depending on which vinylic carbon takes up the halogen. However, one product usually predominates, where hydrogen adds to the vinylic carbon bearing the…

JoVE Research Video for Diels–Alder Reaction Forming Cyclic Products: Stereochemistry 01:28

3.5K

The Diels–Alder reaction is one of the robust methods for synthesizing unsaturated six-membered rings. The reaction involves a concerted cyclic movement of six π electrons: four π electrons from the diene and two π electrons from the dienophile.

For the electrons to flow seamlessly between the two π systems, specific stereochemical and conformational requirements must be met.
Stereochemical Orbital Symmetry
The frontier molecular orbitals that satisfy the symmetry…

JoVE Research Video for Regioselectivity and Stereochemistry of Hydroboration 02:36

7.5K

A significant aspect of hydroboration–oxidation is the regio- and stereochemical outcome of the reaction.
Hydroboration proceeds in a concerted fashion with the attack of borane on the π bond, giving a cyclic four-centered transition state. The –BH2 group is bonded to the less substituted carbon and –H to the more substituted carbon. The concerted nature requires the simultaneous addition of –H and –BH2 across the same face of the alkene giving syn…

JoVE Research Video for α-Bromination of Carboxylic Acids: Hell–Volhard–Zelinski Reaction 01:15

2.7K

The method to achieve α-brominated carboxylic acids using a mixture of phosphorus tribromide and bromine is known as the Hell–Volhard–Zelinski reaction. The reaction is catalyzed by phosphorus tribromide, which can be used directly or produced in situ from red phosphorus and bromine. The mechanism comprises PBr3 catalyzed conversion of acid to acid bromide and hydrogen bromide. The acid bromide enolizes to its enol form in the presence of HBr. The nucleophilic enol attacks the…