Solvent-Free Chemical Recycling of Polyesters and Polycarbonates by Magnesium-Based Lewis Acid Catalyst

Affiliations
  • 1State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012.

Published on:

Abstract

Developing a simple and efficient catalyst system for closed-loop recycling of polymers to monomers is an essentially important but challenging task for the recycle of polymer wastes and preventing the downcycle of plastic products. Herein, we employ inexpensive, commercially available Lewis acids (LAs) to achieve closed-loop recycling in bulk through the catalytic depolymerization of aliphatic polyesters and polycarbonates. The scope of LAs is screened by thermogravimetric analysis experiments and distillation experiments. MgCl shows the best catalytic performance that can efficiently depolymerize eleven aliphatic polyesters and polycarbonates (i.e. poly(ϵ-caprolactone) and poly(trimethylene carbonate)), into monomers (up to 98 % yield) at temperatures significantly lower than the ceiling temperature. Moreover, this catalyst system exhibits high selectivity and compatibility towards the depolymerization of (co)polyesters as well as the blends of polyesters and polycarbonates in the presence of other commodity plastics, as well as excellent recycle and reuse catalyst performance. Mechanistic studies indicate that the closed-loop recycling of monomers is achieved through the random chain scission and terminal group cyclization.

Related Concept Videos

JoVE Research Video for Types of Step-Growth Polymers: Polyesters 01:20

2.2K

The introduction of polyesters has brought major development to the textile industry. The wrinkle-free behavior of polyester blends has eliminated the need for starching and ironing clothes.
Polyesters are commonly prepared from terephthalic acid and ethylene glycol; the crude product is known as poly(ethylene terephthalate) or PET. However, polyesters are synthesized industrially by transesterification of dimethyl terephthalate with ethylene glycol at 150 °C. The two reactants and the…

JoVE Research Video for Olefin Metathesis Polymerization: Overview 01:13

2.0K

Recently, the development of olefin metathesis polymerization advanced the field of polymer synthesis. Simply put, the reorganization of substituents on their double bonds between two olefins in the presence of a catalyst is known as the olefin metathesis reaction. The use of metathesis reaction for polymer synthesis is called olefin metathesis polymerization.
Ruthenium-based Grubbs catalyst is the most commonly used catalyst for olefin metathesis polymerization. Grubbs catalyst consists…

JoVE Research Video for Olefin Metathesis Polymerization: Ring-Opening Metathesis Polymerization (ROMP) 01:16

2.4K

Ring-opening metathesis polymerization or ROMP involves strained cycloalkenes as starting materials. The mechanism of ROMP proceeds by reacting cycloalkene with Grubbs catalyst to give metallacyclobutane intermediate which undergoes a ring-opening reaction to form new carbene. The new carbene reacts with another molecule of cycloalkene. Repetition of these steps leads to the formation of an unsaturated open-chain polymer product. All these steps are reversible, however, relieving the ring…

JoVE Research Video for Cationic Chain-Growth Polymerization: Mechanism 00:57

2.2K

The cationic polymerization mechanism consists of three steps: initiation, propagation, and termination. In the initiation step of the polymerization process, the π bond of a monomer gets protonated by the Lewis acid catalyst, which is formed from boron trifluoride and water. The protonation of the π bond generates a carbocation stabilized by the electron‐donating group. In the propagation step, the π bond of the second monomer acts as a nucleophile and attacks the…

JoVE Research Video for Ziegler–Natta Chain-Growth Polymerization: Overview 01:17

3.1K

Ziegler–Natta polymerization is another form of addition or chain‐growth polymerization used for synthesizing linear polymers over branched polymers. The catalyst used for polymerization is the Ziegler–Natta catalyst, named after Karl Ziegler and Giulio Natta, who developed it in 1953. This catalyst is an organometallic complex of titanium tetrachloride and triethyl aluminum, with the active form of the catalyst being an alkyl titanium compound. Using the Ziegler–Natta…

JoVE Research Video for Anionic Chain-Growth Polymerization: Overview 01:20

2.0K

The polymerization process that involves carbanion as an intermediate is called anionic polymerization. It is also a type of addition or chain-growth polymerization. Anionic polymerization gets initiated by a strong nucleophile such as an organolithium or a Grignard reagent. The most commonly used initiator for anionic polymerization is butyl lithium. Monomers involved in anionic polymerization must possess a vinyl group bonded to one or two electron-withdrawing groups. For instance,…