Transforming Aryl-Tetrazines into Bioorthogonal Scissors for Systematic Cleavage of trans-Cyclooctenes

Affiliations
  • 1Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria.
  • 2Center for Systems Biology & Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 02114, Boston, MA, USA.
  • 3Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria.
  • 4Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000, Prague 6, Czech Republic.
  • 5University of Chemistry and Technology, Department of Chemistry of Natural Compounds, 16628, Prague 6, Czech Republic.

Published on:

Abstract

Bioorthogonal bond-cleavage reactions have emerged as a powerful tool for precise spatiotemporal control of (bio)molecular function in the biological context. Among these chemistries, the tetrazine-triggered elimination of cleavable trans-cyclooctenes (click-to-release) stands out due to high reaction rates, versatility, and selectivity. Despite an increasing understanding of the underlying mechanisms, application of this reaction remains limited by the cumulative performance trade-offs (i.e., click kinetics, release kinetics, release yield) of existing tools. Efficient release has been restricted to tetrazine scaffolds with comparatively low click reactivity, while highly reactive aryl-tetrazines give only minimal release. By introducing hydroxyl groups onto phenyl- and pyridyl-tetrazine scaffolds, we have developed a new class of ‘bioorthogonal scissors’ with unique chemical performance. We demonstrate that hydroxyaryl-tetrazines achieve near-quantitative release upon accelerated click reaction with cleavable trans-cyclooctenes, as exemplified by click-triggered activation of a caged prodrug, intramitochondrial cleavage of a fluorogenic probe (turn-on) in live cells, and rapid intracellular bioorthogonal disassembly (turn-off) of a ligand-dye conjugate.

Related Concept Videos

JoVE Research Video for Cycloaddition Reactions: Overview 01:16

2.3K

Cycloadditions are one of the most valuable and effective synthesis routes to form cyclic compounds. These are concerted pericyclic reactions between two unsaturated compounds resulting in a cyclic product with two new σ bonds formed at the expense of π bonds. The [4 + 2] cycloaddition, known as the Diels–Alder reaction, is the most common. The other example is a [2 + 2] cycloaddition.

The feasibility of cycloaddition reactions under thermal and photochemical conditions can be…

JoVE Research Video for Thermal and Photochemical Electrocyclic Reactions: Overview 01:26

2.1K

Electrocyclic reactions are reversible reactions. They involve an intramolecular cyclization or ring-opening of a conjugated polyene. Shown below are two examples of electrocyclic reactions. In the first reaction, the formation of the cyclic product is favored. In contrast, in the second reaction, ring-opening is favored due to the high ring strain associated with cyclobutene formation.

Electrocyclic reactions are highly stereospecific. For a substituted polyene, the stereochemical outcome…

JoVE Research Video for [3,3] Sigmatropic Rearrangement of Allyl Vinyl Ethers: Claisen Rearrangement 01:24

1.9K

The Claisen rearrangement is a [3,3] sigmatropic rearrangement of allyl vinyl ethers to unsaturated carbonyl compounds. The rearrangement is a concerted pericyclic reaction proceeding via a chair-like transition state.

An aromatic Claisen rearrangement involves the conversion of allyl aryl ethers to an unstable ketone intermediate, which tautomerizes to give ortho-substituted phenols.

However, ortho-substituted allyl aryl ethers exclusively yield para-substituted phenols via two sequential…

JoVE Research Video for Mass Spectrometry: Cycloalkene Fragmentation 00:54

767

The molecular ions of cycloalkenes undergo fragmentation via a retro-Diels–Alder reaction.

The reaction proceeds via the cleavage of two carbon-carbon bonds in the cycloalkene to yield ethene. The remaining part of the cycloalkene structure is a dienyl radical cation with a molecular weight of 28 u lower than the molecular ion. This fragmentation pathway is similar to the fragmentation of cycloalkanes releasing ethene, differing only in the resultant radical cation. An alkyl species…

JoVE Research Video for Alkynes to Carboxylic Acids: Oxidative Cleavage 02:01

4.4K

Alkynes undergo oxidative cleavage in the presence of oxidizing reagents like potassium permanganate and ozone. The triple bond — one σ bond and two π bonds — is completely cleaved, and the alkyne is oxidized to carboxylic acids. When warm and basic aqueous potassium permanganate is used as an oxidizing agent, alkynes are first converted to carboxylate salts via an unstable α-diketone intermediate. Further, a mild acid treatment protonates the carboxylate anions…

JoVE Research Video for Thermal Electrocyclic Reactions: Stereochemistry 01:17

1.8K

The stereochemistry of electrocyclic reactions is strongly influenced by the orbital symmetry of the polyene HOMO. Under thermal conditions, the reaction proceeds via the ground-state HOMO.
Selection Rules: Thermal Activation
Conjugated systems containing an even number of π-electron pairs undergo a conrotatory ring closure. For example, thermal electrocyclization of (2E,4E)-2,4-hexadiene, a conjugated diene containing two π-electron pairs, gives trans-3,4-dimethylcyclobutene.
<br…